Digitizing Historical Land-use Maps with HistMapR

Habitat destruction and degradation represent serious threats to biodiversity, and quantification of land-use change over time is important for understanding the consequences of these changes to organisms and ecosystem service provision.

Historical land-use maps are important for documenting how habitat cover has changed over time, but digitizing these maps is a time consuming process. HistMapR is an R package designed to speed up the digitization process, and in this video we take an example map to show you how the method works.

Digitization is fast, and agreement with manually digitized maps of around 80–90% meets common targets for image classification. We hope that the ability to quickly classify large areas of historical land use will promote the inclusion of land-use change into analyses of biodiversity, species distributions and ecosystem services.

This video is based on the Applications article ‘HistMapR: Rapid digitization of historical land-use maps in R‘ by Auffret et al. This article is freely available to anyone (no subscription required).

The package is hosted on GitHub and example scripts can be downloaded from Figshare.

Microphone Backpacks for Individual-level Acoustic Recordings

To understand the factors shaping vocal communication, we need reliable information about the communicating individuals on different levels. First, vocal behaviour should be recorded from undisturbed animals in meaningful settings. Then we have to separate and assign the individuals’ vocalisations. Finally, the precise timing of vocal events needs to be stored.

Microphone backpacks allow researchers to record the vocal behaviour of individual animals in naturalistic settings – even in acoustically challenging environments! In the video below, Lisa Gill, Nico Adreani and Pietro D’Amelio demonstrate the lightweight radio-transmitter microphone backpacks that have been developed and built at the Max Planck Institute for Ornithology, Seewiesen, Department of Behavioural Neurobiology. They show the attachment and setup of this system in detail, evaluate its behavioural effects, and discuss what makes it so useful for studying vocal communication, especially in small animals.

This video is based on the article ‘A minimum-impact, flexible tool to study vocal communication of small animals with precise individual-level resolution‘ by Gill et al.


Biodiversity estimates from DNA sequences

The complexity of new methodologies can present a challenging barrier towards their uptake. Recognising this, Jeff Powell,  author of Accounting for uncertainty in species delineation during the analysis of environmental DNA sequence data, has put together an excellent tutorial to guide people through the implementation of his objective, theory-based method for predicting species boundaries, which explicitly incorporates uncertainty in the classification system into biodiversity estimation.

The tutorial is available to view and download from Slideshare, and the relevant R code can be found as supplementary material on Wiley Online Library.