Can Opportunistically Collected Citizen Science Data Create Reliable Habitat Suitability Models for Less Common Species?

Post provided by Ute Bradter, Mari Jönsson and Tord Snäll

Detta blogginlägget är tillgängligt på svenska

Opportunistically collected species observation data, or citizen science data, are increasingly available. Importantly, they’re also becoming available for regions of the world and species for which few other data are available, and they may be able to fill a data gap.

Siberian jay ©Ute Bradter

Siberian jay ©Ute Bradter

In Sweden, over 60 million citizen science observations have been collected – an impressive number given that Sweden has a population of about 10 million people and that the Swedish Species Observation System, Artportalen, was created in 2000. For bird-watchers (or plant, fungi, or other animal enthusiasts), this is a good website to bookmark. It will give you a bit of help in finding species and as a bonus, has a lot of pretty pictures of interesting species. Given the amount of data citizen science can provide in areas with few other data, it’s important to evaluate whether they can be used reliably to answer questions in applied ecology or conservation. Continue reading


Issue 7.8

Issue 7.8 is now online!

The August issue of Methods is now online!

This month’s issue contains two Applications articles and two Open Access articles, all of which are freely available.

Plant-O-Matic: A free iOS application that combines the species distribution models with the location services built into a mobile device to provide users with a list of all plant species expected to occur in the 100 × 100 km geographic grid cell corresponding to the user’s location.

RClone: An R package built upon genclone software which includes functions to handle clonal data sets, allowing:

  • Checking for data set reliability to discriminate multilocus genotypes (MLGs)
  • Ascertainment of MLG and semi-automatic determination of clonal lineages (MLL)
  • Genotypic richness and evenness indices calculation based on MLGs or MLLs
  • Describing several spatial components of clonality

Continue reading

Statistical Ecology Virtual Issue

StatEcolVI_WebAdAt the last ISEC, in Montpellier in 2014, an informal survey suggested that Methods in Ecology and Evolution was the most cited journal in talks. This reflects the importance of statistical methods in ecology and it is one reason for the success of the journal. For this year’s International Statistcal Ecology Conference in Seattle we have produced a virtual issue that presents some of our best recent papers which cross the divide between statistics and ecology. They range over most of the topics covered at ISEC, from statistical theory to abundance estimation and distance sampling.

We hope that Methods in Ecology and Evolution will be equally well represented in talks in Seattle, and also – just as in Montpellier – some of the work presented will find its way into the pages of the journal in the future.

Without further ado though, here is a brief overview of the articles in our Statistical Ecology Virtual Issue: Continue reading

Issue 7.5

Issue 7.5 is now online!

The May issue of Methods is now online!

This month’s issue contains two Applications articles and two Open Access articles, all of which are freely available.

piecewiseSEM: A practical implementation of confirmatory path analysis for the R programming language. This package extends the method to all current (generalized) linear, (phylogenetic) least-square, and mixed effects models, relying on familiar R syntax. The article also includes two worked examples.

 RPANDA: An R package that implements model-free and model-based phylogenetic comparative methods for macroevolutionary analyses. It can be used to:

  1. Characterize phylogenetic trees by plotting their spectral density profiles
  2. Compare trees and cluster them according to their similarities
  3. Identify and plot distinct branching patterns within trees
  4. Compare the fit of alternative diversification models to phylogenetic trees
  5. Estimate rates of speciation and extinction
  6. Estimate and plot how these rates have varied with time and environmental variables
  7. Deduce and plot estimates of species richness through geological time. Continue reading

New Associate Editors

Today we are welcoming three new Associate Editors to Methods in Ecology and Evolution: Nick Golding (University of Melbourne, Australia), Rachel McCrea (University of Kent, UK) and Francesca Parrini (University of the Witwatersrand, South Africa). They have all joined on a three-year term and you can find out more about them below.

Nick Golding

Nick Golding

Nick Golding

“I develop statistical models and software for mapping the distributions of species and diseases. I’m particularly interested in tools that make it easy for researchers to add more mechanistic structure into their correlative models (and vice versa) so that they can use all available information when making predictions. I also develop software and other tools to bring research communities together and help them advance ecology by enabling and incentivising reproducible and extensible research.”

Nick has recently had an article published in Methods in Ecology and Evolution (currently in Early View). In ‘Fast and flexible Bayesian species distribution modelling using Gaussian processes‘ Nick and his co-author (Bethan Purse) introduce Gaussian process (GP) models and their application to species distribution modelling (SDM), illustrate how ecological knowledge can be incorporated into GP SDMs via Bayesian priors and formulate a simple GP SDM that can be fitted efficiently. The article is Open Access, so it’s freely available to everyone.

Rachel McCrea

Rachel McCrea

Rachel McCrea

“I am a NERC research fellow and lecturer in statistics at the University of Kent.  My particular areas of interest include capture-recapture modelling, multistate models, modelling population dynamics and methods of model assessment.  My research is motivated by interesting discussions with ecologists and I strive to find innovative, but practical statistical solutions to ecological questions.”

Rachel is one of the authors of Analysis of Capture-Recapture Data (along with Byron Morgan). The book covers the many modern developments of capture-recapture (and related) methods and will be of interest to researchers and graduate students in statistics, ecology and demography. It contains 130 exercises designed to complement and extend the text and help readers to assimilate the material.

Francesca Parrini

Francesca Parrini

Francesca Parrini

“My broad research interests lie in the ecology and behaviour of mammalian herbivores, their interaction with biotic and abiotic factors and the integration of factors governing decisions at the small foraging scale and factors governing decisions at the landscape level. As such, my research lies at the interface of remote sensing, behavioural ecology and conservation. Recently I have become interested in the application of graph theory and network analysis to ecological settings, in particular to study the spatio-temporal structure of animal movement patterns.”

Last year Francesca had her article (co-authored with Maria Miranda) ‘Congruence between species phylogenetic and trophic distinctiveness‘ published in Biodiversity and Conservation. In this paper the authors investigate the relationship between species’ phylogenetic history and patterns of resource use. They show that there is congruence between species phylogenetics and interaction distinctiveness and propose that this relationship could provide a possible novel approach to the conservation of ecosystem diversity.

We are thrilled to welcome Nick, Rachel and Francesca to the Associate Editor Board and we look forward to working with them over the coming years.

Recent content and new video

Lots of exciting content has recently gone online.

Firstly, two interesting new applications (as always free): simapse, simulation maps for ecological niche modelling in Python and nadiv, an R package for estimating non-additive genetic variances in animal models.

Also, two research articles. In the first, Julien Beguin and colleagues introduce an alternative procedure for fitting Bayesian hierarchical spatial models (BHSM) with quite general spatial covariance structures. This procedure uses integrated nested Laplace approximations (INLA) as an alternative to MCMC. In the second, Martin Lavoie, Jen Owens and Dave Risk present a new method for real-time monitoring of soil CO2 efflux.This is attractive because of its low cost and low power consumption compared to traditional methods.

Lastly, Dan Mennill and co-authors show us an affordable, portable, wireless microphone array for spatial monitoring of animal ecology and behaviour. They accompany their article with a nice short video: