Drones used to assess health of Antarctic vegetation

Below is a press release about the Methods paper ‘Unmanned aircraft system advances health mapping of fragile polar vegetation‘ taken from the University of Wollongong.

New method faster, more efficient and less damaging to the environment

A team of researchers from the University of Wollongong (UOW) and the University of Tasmania has developed a new method for assessing the health of fragile Antarctic vegetation using drones, which they say could be used to improve the efficiency of ecological monitoring in other environments as well.

The researchers have written about their method in an article published in Methods in Ecology and Evolution, a scientific journal of the British Ecological Society.

Continue reading

Advertisements

Can We Really Measure Habitat Condition From Space?

Post provided by Tom Harwood, Randall Donohue, Simon Ferrier, Tim McVicar, Graeme Newell, Matt White and Kristen Williams

Remotely sensing can see patterns of land cover, but how do we use this information to quantify human impact on biodiversity?

Remotely sensing can see patterns of land cover, but how do we use this information to quantify human impact on biodiversity? ©NASA/GSFC/Jeff Schmaltz/MODIS Land Rapid Response Team

It’s very hard to make sensible choices without sensible information. When it comes to actions around changing land use and its ecological impact though, this is often what we are forced to do. If we want to reduce the impact of human activities on natural ecosystems, we need to know how much change has already occurred and how altered an ecosystem might be from its “natural” state.

Working out which parts of the landscape have been changed and mapping the absence of natural vegetation is an achievable (though onerous) task. However, moving beyond this binary view of the world is a huge challenge. Pretty much all habitat has been modified by human influences to some extent – by, for example, wood extraction, the introduction of invasive species or livestock grazing. This means that a lot of the apparently native habitat is no longer capable of supporting its full complement of native biodiversity. Continue reading

Getting Every Last Bit Out of Dives: Data Abstraction On-board Telemetry Tags

Post provided by THEONI PHOTOPOULOU, MIKE FEDAK, LEN THOMAS and JASON MATTHIOPOULOS

Animal Telemetry for Air-breathing Divers

CTD-SRDL Tags

CTD-SRDL telemetry tags being primed for deployment. ©Theoni Photopoulou

Nowadays animal telemetry tags for air-breathing divers come in all shapes and sizes. In four short decades tags for diving animals have gone from prototypes like the one built by Jerry Kooyman for deployment on Weddell seals – which consisted of a kitchen timer and a roll of graph paper – to a multitude of sophisticated electronic devices, fit for just about any animal or purpose you can think of.

All this progress has meant we can collect more information than ever before and do so remotely. Nevertheless, the lives of most divers remain a well-kept secret. For tags that transmit what they collect (as opposed to those that store data until they’re retrieved), the transmission stage is usually the bottleneck. This has driven the development of energy and time efficient software and data processing.

For a tag like the conductivity-temperature-depth Satellite Relay Data Logger (CTD-SRDL) built by the Sea Mammal Research Unit Instrumentation Group at the University of St Andrews – which was designed to spend months at sea – the problem boils down to one thing. Data are collected at a high resolution on-board the tag amounting to 100kB daily, but only 1kB of this information (at best) can be transmitted to the ground station. Therefore in preparation for transmission, the data need to be chosen carefully, compacted and fitted into several satellite messages of fixed size to ensure that enough useful information is received. Each satellite message can hold up to 248bits of information. To give an idea of how limiting this is, consider that this sentence would (without compaction) take up 896bits! Continue reading

In Defence of Satellite Data: The Perfect Companion to Ground-Based Research

Post provided by Dr Nathalie Pettorelli

Nathalie is an Institute Research Fellow at the Zoological Society of London. She heads the Environmental Monitoring and Conservation Modelling (EMCM) team and her main research involves assessing and predicting the impacts of global environmental change on biodiversity and ecosystem services. Nathalie was one of the presenters at the UK half of the Methods in Ecology and Evolution 5th Anniversary Symposium in April. You can watch her talk, ‘Harnessing the Potential of Satellite Remote Research’ here.

If there is one question I hear over and over again, it’s this: “why, oh why, do you use satellite data instead of ground-based data in your research?” People seem to think that I believe satellite data are better than ground-based data. Do I not value fieldwork? Do I not trust ground-based data? My answer to all of this is: you’ll never catch me preaching that satellite remote sensing can solve the entire data collection gap in ecological monitoring.

I use satellite data because a lot of my work happens at relatively large spatial and temporal scales, targets regions where ground-based data are simply unavailable or extremely difficult to gather and relies on being able to access data that have been collected in a systematic and scalable manner.

Yes, satellite-based techniques can address spatial and temporal domains inaccessible to traditional, on-the-ground, approaches, but I am the first to acknowledge that satellite remote sensing cannot match the accuracy, precision and thematic richness of in-situ measurement and monitoring.

©Clare Duncan

The New Generation of Ecologists in Action: Clare Duncan conducting field measurements in the Philippines to be combined with satellite remote sensing information to monitor ecosystem services delivery. ©Clare Duncan

In spite of this, data collected on the ground are currently difficult to use for mapping and predicting regional or global changes in the spatio-temporal distribution of biodiversity (a problem for those of us trying to tackle these kinds of issues). Ground-based data can also be expensive and tend to come from a single annual time period. This makes it difficult to gather information on temporal changes and phenology. Continue reading