Issue 8.7

Issue 8.7 is now online!

© Paula Matos

The July issue of Methods is now online!

This issue contains three Applications articles (one of which is Open Access) and one additional Open Access article. These four papers are freely available to everyone, no subscription required.

BioEnergeticFoodWebs: An implementation of Yodzis & Innes bio-energetic model, in the high-performance computing language Julia. This package can be used to conduct numerical experiments in a reproducible and standard way.

 Controlled plant crosses: Chambers which allow you to control pollen movement and paternity of offspring using unpollinated isolated plants and microsatellite markers for parents and their putative offspring. This system has per plant costs and efficacy superior to pollen bags used in past studies of wind-pollinated plants.

 The Global Pollen Project: The study of fossil and modern pollen assemblages provides essential information about vegetation dynamics in space and time. In this Open Access Applications article, Martin and Harvey present a new online tool – the Global Pollen Project – which aims to enable people to share and identify pollen grains. Through this, it will create an open, free and accessible reference library for pollen identification. The database currently holds information for over 1500 species, from Europe, the Americas and Asia. As the collection grows, we envision easier pollen identification, and greater use of the database for novel research on pollen morphology and other characteristics, especially when linked to other palaeoecological databases, such as Neotoma.

Continue reading

New Associate Editors

Today we are welcoming four new Associate Editors to Methods in Ecology and Evolution. Graziella Iossa (University of Lincoln) and Theoni Photopoulou (Nelson Mandela Metropolitan University) are joining as regular Associate Editors and Simon Jarman (Unversity of Porto) and Daniele Silvestro (University of Gothenburg) will be working on Applications articles. You can find out more about all of our new Associate Editors below.

Graziella Iossa

“I am an evolutionary ecologist with broad interests in behavioural and population ecology. My research has explored reproductive strategies and the evolution of male and female reproductive traits in mammals and insects and I have used a range of techniques to study the behaviour and welfare of wildlife. I have just started to explore interdisciplinary approaches with the aim to improve our understanding of the value and role of ecosystem services in human health, specifically for antimicrobial resistance.”

Graziella’s most recent paper – Micropyle number is associated with elevated female promiscuity in Lepidoptera – investigates the evolution of the micropyle, a tiny canal which sperm use to fertilise eggs in insects. This is the first study to show that micropylar variation is driven by female promiscuity – the more micropyles her eggs have, the more choice she is likely to have over which male fathers her offspring. Also, Graziella currently holds a NERC Valuing Nature placement which aims to combine perspectives from evolutionary ecology, microbial ecology, epidemiology, ecosystem science and public health to develop a new, holistic way of understanding antimicrobial resistance

Simon Jarman

“Methods employing epigenetics, environmental DNA analysis or bioinformatics for ecological research are improving rapidly and have clear potential for future development. My research focuses on creating new methods in these areas and using them to study population biology and biodiversity. Epigenetic markers for physiological features such as biological age can be used to determine key features of population biology such as age class distribution. Environmental DNA can be used to measure species distributions; biodiversity in environmental samples; and animal diet composition. I am interested in the molecular biology and computational approaches that are required to implement these methods; as well as how they can be used to study specific ecological questions.”

In November 2016, Simon published an Open Access article in Methods in Ecology and Evolution. ‘Optimised scat collection protocols for dietary DNA metabarcoding in vertebrates‘ explains how to collect scat samples to optimise the detection of food DNA in vertebrate scat samples. More recently, Simon was the last author of ‘KrillDB: A de novo transcriptome database for the Antarctic krill (Euphausia superba)‘ – which introduces the most advanced genetic database on Euphausia superba, KrillDB, and includes comprehensive data sets of former and present transcriptome projects.

Theoni Photopoulou

“I am interested in the way biological and ecological phenomena change in space and over time. My special interest is animal movement ecology and the mechanisms behind the patterns of movement we observe. Most of the time I work on ecological questions about how animals use their environment and the resources in it, using data collected remotely with animal-attached instruments. Marine biology was my first love so I will always have a soft spot for marine systems, especially movement of large marine vertebrates, but I work on all sorts of tracking data and also some non-tracking data.”

Theoni has also recently been published in Methods in Ecology and Evolution. Her article ‘Analysis of animal accelerometer data using hidden Markov model‘ appeared in the February issue of the journal (and provided the cover image). In the paper, the authors provide the details necessary to implement and assess a hidden Markov Model in both the supervised and unsupervised learning contexts and discuss the data requirements of each case. Another of Theoni’s articles has just been accepted for publication in Frontiers in Zoology. ‘Evidence for a postreproductive phase in female false killer whales (Pseudorca crassidens)‘ investigates the evidence for postreproductive lifespan (PRLS) in the false killer whale, using a quantitative measure of PRLS and morphological evidence from reproductive tissue.

Daniele Silvestro

“I am a computational biologist and my research focuses on (macro)evolution and the development of new probabilistic models to better understand it. I am interested in the implementation of Bayesian algorithms to model evolutionary processes such as phenotypic trait evolution and species diversification and extinction. I am also interested in historical biogeography and in particular in the estimation of dispersal rates and biotic connectivity between geographic areas. A lot of my work involves developing new models and algorithms and implementing them in computer programs. I have been using both phylogenetic data and fossil occurrences to infer deep time evolutionary dynamics and I am keen to see an improved integration between paleontological and neontological data in evolutionary research.”

In his most recent article – ‘Bayesian estimation of multiple clade competition from fossil data‘ – Daniele and his co-authors explore the properties of the existing Multiple Clade Diversity Dependence implementation, which is based on Bayesian variable selection, and introduce an alternative parameterisation based on the Horseshoe prior. He was also one of the authors of ‘Mammal body size evolution in North America and Europe over 20 Myr: similar trends generated by different processes‘, published in Proceedings of the Royal Society B earlier this year.

We are thrilled to welcome Simon, Graziella, Theoni and Daniele to the Associate Editor Board and we look forward to working with them over the coming years.

Movement Ecology: Stepping into the Mainstream

Post provided by Theoni Photopoulou

“Movement is the glue that ties ecological processes together”
from Francesca Cagnacci et al. 2010

CTD-SRDL telemetry tags being primed for deployment. ©Theoni Photopoulou

CTD-SRDL telemetry tags being primed for deployment. ©Theoni Photopoulou

Movement ecology is a cross-disciplinary field. Its main aim is to quantitatively describe and understand how movement relates to individual and population-level processes for resource acquisition and, ultimately, survival. Today the study of movement ecology hinges on two 21st century advances:

  1. Animal-borne devices/tags (biologging science, Hooker et al., 2007) and/or remote sensing technology to quantify movement and collect data from remote or otherwise challenging environments
  2. Computational power sufficient to manipulate, process and analyse substantial volumes of data

Although datasets often involve small numbers of individuals, each individual can have thousands – sometimes even millions – of data points associated with it. Study species have tended to be large birds and mammals, due to the ease of tag attachment. However, the trend for miniaturisation of tags and the development of remote detection technologies (such as radar, e.g. Capaldi et al., 2000), have allowed researchers to track and study ever smaller animals. Continue reading

Soaring with Eagles, Swimming with Sharks: Measuring Animal Behaviour with Hidden Markov Models


Around the world there are concerns over the impacts of land use change and the developments (such as wind farms). These concerns have led to the implementation of tracking studies to better understand movement patterns of animals. Such studies have provided a wealth of high-resolution data and opportunities to explore sophisticated statistical methods for analysis of animal behaviour.

We use accelerometer data from aerial (Verreaux’s eagle in South Africa) and marine (blacktip reef shark in Hawai’i) systems to demonstrate the use of hidden Markov models (HMMs) in providing quantitative measures of behaviour. HMMs work really well for analysing animal accelerometer data because they account for serial autocorrelation in data. They allow for inferences to be made about relative activity and behaviour when animals cannot be directly observed too, which is very important.

In addition to this, HMMs provide data-driven estimates of the underlying distributions of the acceleration metrics – and the probability of switching between states – possibly as a function of covariates. The framework that we provide in ‘Analysis of animal accelerometer data using hidden Markov models‘ can be applied to a wide range of activity data. It opens up exciting opportunities for understanding drivers of individual animal behaviour.

The following images provide an inside view into the ecosystems in which the Verreaux’s eagle and blacktip reef shark reside.

Soaring with Veraux’s Eagles

Swimming with Blacktip Reef Sharks

To find out more, read our Methods in Ecology and Evolution article ‘Analysis of animal accelerometer data using hidden Markov models’.

New podcast and video

In case you haven’t seen them, this month we have published a new podcast and video so far.

In our latest video, David Warton, The University of New South Wales, Australia, presents his ‘mvabund’ package on multivariate analysis. What makes this software different from other ones on multivariate analysis, is that it’s all about models that you can fit to your data. David explains how to look at the properties of your data and the common pitfalls in modelling multivariate data. He also goes through how to fit generalised linear models to your data. Do check David’s dancing!

Mvabund is a free application.

Movement ecology and habitat selection in human resource users

In their podcast with slideshow, Sarah Papworth and Nils Bunnefeld, Imperial College London, applied ecological methods and principles to GPS data on human movement to investigate the differences in movement ecology and habitat selection in human hunters and non hunters who return to a central place. Please note this is an mp4 file, to listen or download the mp3 file of the podcast click here.


Latest papers online

In the past week, MEE has been at the ITN Speciation conference in Jyväskylä. As a result, journal updates have been slower than usual. So here is a quick overview of the new papers available online during the past week:

Research papers:
Movement ecology of human resource users: using net squared displacement, biased random bridges and resource utilization functions to quantify hunter and gatherer behaviour
Sarah K. Papworth, Nils Bunnefeld, Katie Slocombe and E. J. Milner-Gulland
This paper is accompanied by a podcast. Follow this link if you use a Mac to access the podcast.

Modelling dispersal: an eco-evolutionary framework incorporating emigration, movement, settlement behaviour and the multiple costs involved
Justin M. J. Travis, Karen Mustin, Kamil A. Bartoń, Tim G. Benton, Jean Clobert, Maria M. Delgado, Calvin Dytham, Thomas Hovestadt, Stephen C. F. Palmer, Hans Van Dyck and Dries Bonte

Designing a benthic monitoring programme with multiple conflicting objectives
Allert I. Bijleveld, Jan A. van Gils, Jaap van der Meer, Anne Dekinga, Casper Kraan, Henk W. van der Veer and Theunis Piersma

Application – as you know, all our applications are free:
mvabund– an R package for model-based analysis of multivariate abundance data
Yi Wang, Ulrike Naumann, Stephen T. Wright and David I. Warton