Issue 8.7

Issue 8.7 is now online!

© Paula Matos

The July issue of Methods is now online!

This issue contains three Applications articles (one of which is Open Access) and one additional Open Access article. These four papers are freely available to everyone, no subscription required.

BioEnergeticFoodWebs: An implementation of Yodzis & Innes bio-energetic model, in the high-performance computing language Julia. This package can be used to conduct numerical experiments in a reproducible and standard way.

 Controlled plant crosses: Chambers which allow you to control pollen movement and paternity of offspring using unpollinated isolated plants and microsatellite markers for parents and their putative offspring. This system has per plant costs and efficacy superior to pollen bags used in past studies of wind-pollinated plants.

 The Global Pollen Project: The study of fossil and modern pollen assemblages provides essential information about vegetation dynamics in space and time. In this Open Access Applications article, Martin and Harvey present a new online tool – the Global Pollen Project – which aims to enable people to share and identify pollen grains. Through this, it will create an open, free and accessible reference library for pollen identification. The database currently holds information for over 1500 species, from Europe, the Americas and Asia. As the collection grows, we envision easier pollen identification, and greater use of the database for novel research on pollen morphology and other characteristics, especially when linked to other palaeoecological databases, such as Neotoma.

Continue reading

Advertisements

New Associate Editors

Today we are welcoming two new people to the Methods in Ecology and Evolution Associate Editor Board. Pierre Durand is joining us from the University of the Witwatersrand (South Africa) and Andrew Mahon joins from Central Michigan University (USA). You can find out more about Pierre and Andrew below.

Pierre Durand

Pierre Durand

“My research is broadly focussed on the evolution of complexity. Many of my projects are related to the evolutionary ecology of programmed cell death (PCD) in unicellular organisms; how PCD impacts microbial communities; and how the philosophy of levels of selection informs our understanding of PCD evolution. I have also examined other aspects of complexity evolution such as the origin of life and group formation in unicellular chlorophytes in response to predation. The model organisms I typically use are phytoplankton. With specific reference to submissions to Methods in Ecology and Evolution, I have used a range of methods in my research, including general cell and molecular biology tools, biochemical assays, microscopy, flow cytometry, bioinformatics and computational algorithms.”

The most current projects in Pierre’s laboratory concern: programmed cell death evolution and complexity in microbial communities; changes in phytoplankton abundance and diversity in harmful algal blooms, led by PhD candidate Andrew Ndhlovu (“A red tide forming dinoflagellate Prorocentrum triestinum: identification, phylogeny and impacts on St Helena Bay, South Africa” in review in Phycologia); and the genomics of the four-celled chlorophyte Tetrabaena socialis, led by PhD candidate Jonathan Featherson.

Andrew Mahon

Andrew Mahon

“I’m a molecular ecologist who uses genetic and genomic tools to ask questions ranging from surveillance and monitoring to biodiversity and phylogeography.  My work includes development of novel molecular detection tools and metabarcoding applications for aquatic invasive species.  I’m also interested in applying molecular tools to ask questions related to the evolution and biodiversity of benthic marine invertebrates in Antarctica.”

Andrew has recently been published in the journal Research Ideas and Outcomes (‘DNAqua-Net: Developing new genetic tools for bioassessment and monitoring of aquatic ecosystems in Europe‘) and in Environmental Science and Technology (‘Influence of Stream Bottom Substrate on Retention and Transport of Vertebrate Environmental DNA‘). He also has a manuscript in press with Ecology and Evolution (‘Geographic structure in the Southern Ocean circumpolar brittle star Ophionotus victoriae (Ophiuridae) revealed from mtDNA and single-nucleotide polymorphism data‘).

We are thrilled to welcome Pierre and Andrew to the Associate Editor Board and we look forward to working with them over the coming years.

Genetic Research May Help Trace Chum Salmon to Home Rivers

Below is a press release about the Methods paper ‘Potentially adaptive mitochondrial haplotypes as a tool to identify divergent nuclear loci‘ taken from the University of Alaska Fairbanks.

Michael Garvin sails through Auke Bay, just north of Juneau in Southeast Alaska. ©Chris Lunsford

Michael Garvin sails through Auke Bay, just north of Juneau in Southeast Alaska. ©Chris Lunsford

University of Alaska Fairbanks researchers have uncovered genetic markers that can help trace chum salmon to the rivers in which they hatched, according to a new paper published in the journal Methods in Ecology and Evolution.

Mapping out chum salmon pathways could help improve management of the species in Western Alaska, according to Oregon State University Department of Integrative Biology postdoctoral fellow Michael Garvin.

“In some years, chum salmon are frequently the bycatch of pollock fishermen” in the Bering Sea, Garvin explained. “Genetically, chum salmon that originate in Western Alaska tend to look very similar. This makes it difficult for stakeholders because management and conservation efforts to address this bycatch can differ among these regions, but the ability to identify them with genetics is not possible.” Continue reading

Ecological Transcriptomics for Endangered Species: Avoiding the “Successful Operation, but the Patient Died” Problem

Post provided by TILL CZYPIONKA, DANIEL GOEDBLOED, ARNE NOLTE and LEON BLAUSTEIN

Ecological Transcriptomics and Endangered Species

 The small size of the rockpool and the salamander population makes non-invasive sampling a necessity (from left: Tamar Krugman, Alan Templeton, Leon Blaustein). © Arne Nolte

The small size of the rockpool and the salamander population makes non-invasive sampling a necessity (from left: Tamar Krugman, Alan Templeton, Leon Blaustein). © Arne Nolte

Friday was Endangered Species Day – so this is a good time to reflect on what science and scientists can do to support conservation efforts and to reduce the rate of species extinctions. One obvious answer is that we need to study endangered species to understand their habitat requirements as well as their potential for acclimatization and adaptation to changing environmental conditions. This information is crucial to for the design of informed conservation planning. However, for most endangered species the relevant phenotypes are not known a priori, which leaves the well-intentioned scientist asking “which traits should I measure?”. Transcriptome analysis is often a good way to answer to this question.

Transcriptome analysis measures the expression levels of thousands of genes in parallel. This amount of data circumvents the need to decide on a reduced number of traits of unknown relevance and allows for a relatively unbiased phenotypic screen of many traits. In particular, physiological changes, which often influence a species’ distributional range, can be studied using transcriptome analysis. Also, transcriptomics provide a direct connection to the genetic level. This is essential for in-depth analyses of aspects of evolution and might even be helpful for a new kind of conservation planning, which aims to foster endangered species by promoting (supposedly) beneficial hybridization. The integration of transcriptomic analysis with ecological studies is known as ‘Ecological transcriptomics’. Continue reading

Tips for Publishing Methods Papers in Ecological Journals

At the 2015 Eco-Stats Conference at the University of New South Wales there was a Q&A panel discussion of tips for authors publishing methods papers. The panel was chaired by Methods in Ecology and Evolution Associate Editor David Warton. It included Jane Elith (winner of the Methods Recognition of Achievement award), Associate Editor Matt Schofield and former Associate Editor Shinichi Nakagawa. There was also a late appearance, straight off a long haul flight from China, by Doug Yu (another current Associate Editor).

Continue reading

The Arborist Throw-line Launcher

Collecting leaves or seeds from tall trees is a difficult task that many plant physiologists, ecologists, geneticists and forest managers encounter repeatedly. In a series of videos on the Methods in Ecology and Evolution YouTube channel, Kara N. YoungentobChristina Zdenek and Eva van Gorsel demonstrate how to use the arborist throw-line launcher, which significantly simplifies this task. This new way of collecting seeds and leaves from tall trees is explained in their Applications article ‘A simple and effective method to collect leaves and seeds from tall trees‘. As this is an Applications paper, it is freely available to everyone.

Basic Techniques for the Arborist Throw-line Launcher

The first of the three videos is a basic overview of the method. In this tutorial, the authors teach you how to find the ideal branch, how to use the throw-line launcher and go through some important safety information. Continue reading

My Entropy ‘Pearl’: Using Turing’s Insight to Find an Optimal Estimator for Shannon Entropy

Post provided by Anne Chao (National Tsing Hua University, Taiwan)

Shannon Entropy

Not quite as precious as my entropy pearl

Not quite as precious as my entropy pearl ©Amboo Who

Ludwig Boltzmann (1844-1906) introduced the modern formula for entropy in statistical mechanics in 1870s. Since its generalization by Claude E. Shannon in his pioneering 1948 paper A Mathematical Theory of Communication, this entropy became known as ‘Shannon entropy’.

Shannon entropy and its exponential have been extensively used to characterize uncertainty, diversity and information-related quantities in ecology, genetics, information theory, computer science and many other fields. Its mathematical expression is given in the figure below.

In the 1950s Shannon entropy was adopted by ecologists as a diversity measure. It’s interpreted as a measure of the uncertainty in the species identity of an individual randomly selected from a community. A higher degree of uncertainty means greater diversity in the community.

Unlike species richness which gives equal weight to all species, or the Gini-Simpson index that gives more weight to individuals of abundant species, Shannon entropy and its exponential (“the effective number of common species” or diversity of order one) are the only standard frequency-sensitive complexity measures that weigh species in proportion to their population abundances. To put it simply: it treats all individuals equally. This is the most natural weighing for many applications. Continue reading

How Did We Get Here From There? A Brief History of Evolving Integral Projection Models

Post provided by MARK REES and Steve Ellner

The Early Days: Illyrian Thistle and IBMs

Illyrian Thistle

Illyrian Thistle

Back in 1997 MR was awarded a travel grant from CSIRO to visit Andy Sheppard in Canberra. CSIRO had been collecting detailed long-term demographic data on several plant species and Andy was keen to develop data-driven models for management.

Andy decided Illyrian thistle (Onopordum Illyricum) would be a good place to start, as this was the most complicated in terms of its demography. The field study provided information on size, age and seed production. The initial goal was to quantify the impact of seed feeders on plant abundance, but after a few weeks of data analysis it became apparent that the annual seed production per quadrat was huge (in the 1000s) but there were always ~20 or so recruits. This meant that effects of seed feeders (if any) occurred outside the range of the data, which wasn’t ideal for quantitative prediction.

So the project developed in a different direction. Onopordum is a monocarpic perennial (it lives for several years then flowers and dies) and Tom de Jong and Peter Klinkhamer had recently developed models to predict at what size or age monocarps should flower, so it seemed reasonable to see if this would work. Continue reading

International Marine Connectivity Conference: Pre-Booking Now Open

Background of the iMarCo

iMarCoiMarCo is a new initiative aimed at creating an international network for promoting collaborative projects among European scientists interested in the study of marine connectivity. The network covers a broad spectrum of marine science disciplines including physical oceanography, microchemistry, genetics and evolutionary ecology, behaviour, tagging, fisheries and aquaculture.

The strategic objective of iMarCo is to organise and create synergies among the European scientific community sharing an interest in the understanding of the spatial dynamics of marine populations. Continue reading

Issue 6.11

Issue 6.11 is now online!

The November issue of Methods is now online!

This month’s issue contains two Applications articles and one Open Access article, all of which are freely available.

mvMORPH: A package of multivariate phylogenetic comparative methods for the R statistical environment which allows fitting a range of multivariate evolutionary models under a maximum-likelihood criterion. Its use can be extended to any biological data set with one or multiple covarying continuous traits.

Low-cost soil CO2 efflux and point concentration sensing systems: The authors use commercially available, low-cost and low-power non-dispersive infrared (NDIR) CO2 sensors to develop a soil CO2 efflux system and a point CO2 concentration system. Their methods enable terrestrial ecologists to substantially improve the characterization of CO2 fluxes and concentrations in heterogeneous environments.

This month’s Open Access article comes from Jolyon Troscianko and Martin Stevens. In ‘Image calibration and analysis toolbox – a free software suite for objectively measuring reflectance, colour and pattern‘ they introduce a toolbox that can convert images to correspond to the visual system (cone-catch values) of a wide range of animals, enabling human and non-human visual systems to be modelled. The toolbox is freely available as an addition to the open source ImageJ software and will considerably enhance the appropriate use of digital cameras across multiple areas of biology. In particular, researchers aiming to quantify animal and plant visual signals will find this useful. This article received some media attention upon Early View publication over the summer. You can read the Press Release about it here.

Our November issue also features articles on Population Genetics, Macroevolution, Modelling species turnover, Abundance modelling, Measuring stress and much more. Continue reading