Refined DNA Tool Tracks Native and Invasive Fish

Below is a press release about the Methods paper ‘Long-range PCR allows sequencing of mitochondrial genomes from environmental DNA‘ taken from the Cornell University.

©Nick Hobgood

Rather than conduct an aquatic roll call with nets to know which fish reside in a particular body of water, scientists can now use DNA fragments suspended in water to catalog invasive or native species.

The research from Cornell University, the University of Notre Dame and Hawaii Pacific University was published July 14 in Methods in Ecology and Evolution.

“We’ve sharpened the environmental DNA (eDNA) tool, so that if a river or a lake has threatened, endangered or invasive species, we can ascertain genetic detail of the species there,” said senior author David Lodge, the Francis J. DiSalvo Director of the Atkinson Center for a Sustainable Future at Cornell, and professor of ecology and evolutionary biology. “Using eDNA, scientists can better design management options for eradicating invasive species, or saving and restoring endangered species.” Continue reading

Advertisements

Testing the Effects of Underwater Noise on Aquatic Animals

Post provided by Karen de Jong

Most people assume that research equipment is expensive and complicated. But, it doesn’t need to be and the noise egg is a perfect example of this. It consists of a watertight container (as used by scuba divers) and the buzzer from a cellphone and does exactly what it says: it produces low frequency noise. This allows researchers to test the effect of noise on underwater life. It is a small, simple and cheap device that anyone can build.

Why Test Effects of Noise?

A painted goby in front of his nest ©K. de Jong

A painted goby in front of his nest ©K. de Jong

Underwater noise is rapidly increasing due to, for example, boat traffic and offshore wind farms. This can lead to stress for animals and difficulties in communication. Just as people have a hard time communicating in a noisy pub, animals may struggle to get their messages across when background noise is high. A nice description of how animals use sound and how noise may affect this can be found at www.dosits.org

While there is some knowledge on the effect of noise on large aquatic animals, we still know very little about how fish and other small aquatic animals are affected. Such knowledge is vital for management of protected areas. It’s also important to know whether wind farms and boat traffic can affect reproduction in populations of underwater resources such as fish and mussels. The answers to these questions are likely to be species specific, so we’ll need data on a large number of species in different habitats. Continue reading

Estimating Shifts in Species Distribution: An Interview with James Thorson

David Warton (University of New South Wales) interviews James Thorson (NOAA) about his paper Model-based inference for estimating shifts in species distribution, area occupied and centre of gravity. The article is included in the August 2016 issue of Methods in Ecology and Evolution.  They discuss how to estimate changes in distribution shifts accounting for changes in the spatial distribution of sampling intensity, James’ current workplace NOAA, his academic background and what trouble he is planning to get up to next.

Continue reading

The Overlooked Commotion of Particle Motion in the Ocean

Below is a press release about the Open Access Methods paper ‘Particle motion: the missing link in underwater acoustic ecology‘ taken from the University of Bristol, the University of Exeter and the Centre for Environment, Fisheries  & Aquaculture Science (CEFAS).

Fish and invertebrates predominantly or exclusively detect particle motion.

Fish and invertebrates predominantly or exclusively detect particle motion.

A growing number of studies on the behaviour of aquatic animals are revealing the importance of underwater sound, yet these studies typically overlook the component of sound sensed by most species: particle motion. In response, researchers from the Universities of Bristol, Exeter and Leiden and CEFAS have developed a user-friendly introduction to particle motion, explaining how and when it ought to be measured, and provide open-access analytical tools to maximise its uptake. Continue reading

What fish ears can tell us about sex, surveillance and sustainability

Below is a press release about the Methods paper, ‘Quantifying physiological influences on otolith microchemistry, from the University of Southampton:

Dr Anna Sturrock blood sampling plaice ©Anna Sturrock

Dr Anna Sturrock blood sampling plaice ©Anna Sturrock

Scientists at the University of Southampton have found a way to pry into the private lives of fish – by looking in their ears!

By studying ear stones in fish, which act as tiny data recorders, scientists can now reveal migration patterns and even provide insights into their sex life.

Managing fish stocks in a sustainable way is a major challenge facing scientists, conservationists, policy makers and fishermen. To get the best results, accurate information about the movements of fish in the wild is needed but gathering this information is extremely difficult. Continue reading