Assessment of Stream Health with DNA Metabarcoding

Following on from last week’s press release ‘How Clean are Finnish Rivers?’, Vasco Elbrecht et al. have produced a video to explain the methods in ‘Assessing strengths and weaknesses of DNA metabarcoding-based macroinvertebrate identification for routine stream monitoring‘.

In this video, the authors explore the potential of DNA metabarcoding to access stream health using macroinvertebrates. They compared DNA and morphology-based identification of bulk monitoring samples from 18 Finnish stream ecosystems. DNA-based methods show higher taxonomic resolution and similar assessment results as currently used morphology-based methods. Their study shows that the tested DNA-based methods integrate well with current approaches, but further optimisation and validation of DNA metabarcoding methods is encouraged.

This video is based on the article ‘Assessing strengths and weaknesses of DNA metabarcoding-based macroinvertebrate identification for routine stream monitoring‘ by Elbrecht et al.


Lichens and the “health” of ecosystems: we are closer to a global ecological indicator

Below is a press release about the Methods paper ‘Tracking global change using lichen diversity: towards a global-scale ecological indicator‘ taken from the University of Lisbon.

Candelaria pacifica. © Paula Matos

Candelaria pacifica. © Paula Matos

For the first time, it is possible to integrate at the global scale the results obtained with the most widely used methods to evaluate the “health” of ecosystems using lichens. This is the result of a study now published in the journal Methods in Ecology and Evolution, and represents a fundamental step for this indicator to be considered at the global scale and included in the list of indicators of the United Nations.

Lichens have long been successfully used by scientists as ecological indicators – a kind of environment health thermometer. These complex organisms – the yellow or green taints we often see on the surface of tree trunks – are very sensitive to pollution and changes in temperature and humidity. Evaluating how many lichens, of what kind, and their abundance in a certain ecosystem allows scientists to understand the impact that problems like climate change or pollution have on those ecosystems.  Continue reading