Issue 9.2

Issue 9.2 is now online!

The February issue of Methods is now online!

This double-size issue contains six Applications articles (one of which is Open Access) and two Open Access research articles. These eight papers are freely available to everyone, no subscription required.

 Temperature Manipulation: Welshofer et al. present a modified International Tundra Experiment (ITEX) chamber design for year-round outdoor use in warming taller-stature plant communities up to 1.5 m tall.This design is a valuable tool for examining the effects of in situ warming on understudied taller-stature plant communities

 ZoonThe disjointed nature of the current species distribution modelling (SDM) research environment hinders evaluation of new methods, synthesis of current knowledge and the dissemination of new methods to SDM users. The zoon R package aims to overcome these problems by providing a modular framework for constructing reproducible SDM workflows.

 BEIN R Package: The Botanical Information and Ecology Network (BIEN) database comprises an unprecedented wealth of cleaned and standardised botanical data. The bien r package allows users to access the multiple types of data in the BIEN database. This represents a significant achievement in biological data integration, cleaning and standardisation.

Continue reading

Advertisements

An Interview with Tony Ives

David Warton interviews Tony Ives, a Keynote speaker at the Statistics in Ecology and Environmental Monitoring (SEEM) conference in Queenstown, NZ. Tony has published a few papers in Methods in Ecology and Evolution over the last couple of years – first we discuss the exchanges on log-transformation of counts (including a paper co-authored with David Warton).

Tony and David then talk about a recent paper by Daijiang Li with Tony, on the need to check for phylogenetic structure when looking for associations between species trait and the environment.

We’ll have more of David’s interviews from the SEEM Conference coming out over the next couple of months. Keep an eye out for them here and on the Methods in Ecology and Evolution YouTube channel.

Exploring Coevolutionary History: Do Entire Communities Shape the Evolution of Individual Species?

Post provided by Laura Russo, Katriona Shea, and Adam Miller

Diffuse Coevolution

Interactions between plants and pollinators tend to be highly generalized.

Interactions between plants and pollinators tend to be highly generalized.

In 1980, Janzen published an article titled “When is it coevolution?” where he explained the concept of diffuse coevolution: the idea that evolution of interacting species is shaped by entire communities, rather than simple paired interactions. This idea, though compelling, remains poorly understood, and strong evidence of diffuse coevolution acting on a community is lacking. Perhaps this is because there’s a lack of consensus on what would constitute evidence in support of the concept of diffuse coevolution, or, indeed, coevolution in general (Nuismer et al 2010). Continue reading

Improved and Harmless Demethylation Method for Ecological Epigenetic Experiments

In a new Methods in Ecology and Evolution video, Javier Puy outlines a new method of experimental plant DNA demethylation for ecological epigenetic experiments. While the traditionally-used approach causes underdeveloped root systems and high mortality of treated plants, this new one overcomes the unwanted effects while maintaining the demethylation efficiency. The authors demonstrate its application for ecological epigenetic experiments: testing transgenerational effects of plant–plant competition.

This novel method could be better suited for experimental studies seeking valuable insights into ecological epigenetics. As it’s based on periodical spraying of azacytidine on established plants, it’s suitable for clonal species reproducing asexually, and it opens the possibility of community-level experimental demethylation of plants.

This video is based on the article ‘Improved demethylation in ecological epigenetic experiments: Testing a simple and harmless foliar demethylation application by Puy et al.

Issue 8.11

Issue 8.11 is now online!

The November issue of Methods is now online!

This extra large issue contains seven Applications articles and three Open Access articles. These five papers are freely available to everyone, no subscription required.

 LSCorridors: LandScape Corridors considers stochastic variation, species perception and landscape influence on organisms in the design of ecological corridors. It lets you simulate corridors for species with different requirements and considers that species perceive the surrounding landscape in different ways.

 HistMapR: HistMapR contains a number of functions that can be used to semi-automatically digitize historical land use according to a map’s colours. Digitization is fast, and agreement with manually digitized maps of around 80–90% meets common targets for image classification. This manuscript has a companion video and was recommended by Associate Editor Sarah Goslee.

 vortexR: An R package to automate the analysis and visualisation of outputs from the population viability modelling software Vortex. vortexR facilitates collating Vortex output files, data visualisation and basic analyses (e.g. pairwise comparisons of scenarios), as well as providing more advanced statistics.

Continue reading

Mark-Recapture and Metapopulation Structure: Using Study Design to Minimize Heterogeneity

Post provided by Delphine Chabanne

Pod of bottlenose dolphins observed in Cockburn Sound, Perth, Western Australia.

Pod of bottlenose dolphins observed in Cockburn Sound, Perth, Western Australia.

Wildlife isn’t usually uniformly or randomly distributed across land- or sea-scapes. It’s typically distributed across a series of subpopulations (or communities). The subpopulations combined constitute a metapopulation. Identifying the size, demography and connectivity between the subpopulations gives us information that is vital to local-species conservation efforts.

What is a Metapopulation?

Richard Levins developed the concept of a metapopulation to describe “a population of populations”. More specifically, the term metapopulation has been used to describe a spatially structured population that persists over time as a set of local populations (or subpopulations; or communities).  Emigration and immigration between subpopulations can happen permanently (through additions or subtractions) or temporarily (through the short-term presence or absence of individuals).

How individuals could distribute themselves within an area.

How individuals could distribute themselves within an area.

Continue reading

Issue 8.8

Issue 8.8 is now online!

The August issue of Methods is now online!

This issue contains two Applications articles and two Open Access articles. These four papers are freely available to everyone, no subscription required.

 Paco: An R package that assesses the phylogenetic congruence, or evolutionary dependence, of two groups of interacting species using both ecological interaction networks and their phylogenetic history.

 Open MEE: Open Meta-analyst for Ecology and Evolution (Open MEE) addresses the need for advanced, easy-to-use software for meta-analysis and meta-regression.It offers a suite of advanced meta-analysis and meta-regression methods for synthesizing continuous and categorical data, including meta-regression with multiple covariates and their interactions, phylogenetic analyses, and simple missing data imputation.

Continue reading

At Last, a Paleobiologist is a Senior Editor for Methods in Ecology and Evolution!

Post provided by Lee Hsiang Liow

An Asian, female Senior Editor under 45? Progressive! I have loved Methods in Ecology and Evolution since it appeared in 2010 and am thrilled to have been selected to join Rob, Bob and Jana to help with the journal’s continued development.

OK, so you want to know who the new Senior Editor on the MEE block is.  I’m just another scientist, I guess. On the outside, we look different but on the inside, we’re all the same. (OK, perhaps we are a little different, even on the inside, but that makes life and research interesting, right?)

Here’s my academic life history: I did my Bachelors thesis on the systematics/phylogenetics of an obscure group of marine pulmonate slugs with one of the greatest Icelandic biologists I know, Jon Sigurdsson, at the National University of Singapore. I followed this up with an almost-half-year stint at the Museum of Natural Science in Berlin as a “nobody”, digitizing data. Then I won the academic lottery and headed up to Uppsala to do my masters in conservation biology on tropical pollinator diversity, (un)supervised by two amazing supervisors that never met each other, the late Navjot Sodhi (National University of Singapore) and Thomas Elmqvist, now at Stockholm University. Continue reading

Fast-Moving Biodiversity Assessment: Are We Already in the Future?

Post provided by Carola Gómez-Rodríguez & Alfried P. Vogler

Time flies… in the blink of an eye! And even more so in science. The molecular lab work we were used to two decades ago seems like ancient history to today’s PhD students. The speed of change in sequencing technology is so overwhelming that imagination usually fails to foresee how our daily work will be in 10 years’ time. But in the field of biodiversity assessment, we have very good clues. Next Generation Sequencing is quickly becoming our workhorse for ambitious projects of species and genetic inventories.

One by One Approach to Studying Biodiversity

For decades, most initiatives measured biodiversity in the same way: collect a sample of many individuals in the field, sort the specimens, identify them to a Linnaean species one at a time (if there was a good taxonomist in the group which, unfortunately, it is kind of lucky these days!), and count them. Or, if identification was based on molecular data, the specimen was subject to DNA extraction, to sequence one (or several) short DNA markers. This involved countless hours of work that could be saved if, instead of inventorying biodiversity specimen-by-specimen, we followed a sample-by-sample approach. To do this now, we just have to make a “biodiversity soup”.

Biodiversity assessment based on morphological identification and/or Sanger sequencing (“The one-by-one approach”)

Biodiversity assessment based on morphological identification and/or Sanger sequencing (“The one-by-one approach”)

Continue reading

Building Universal PCR Primers for Aquatic Ecosystem Assessments

Post provided by Vasco Elbrecht

Many things can negatively affect stream ecosystems – water abstraction, eutrophication and fine sediment influx are just a few. However, only intact freshwater ecosystems can sustainably deliver the ecosystem services – such as particle filtration, food biomass production and the supply of drinking water – that we rely on. Because of this, stream management and restoration has often been in the focus of environmental legislation world-wide. Macrozoobenthic communities are often key biological components of stream ecosystems. As many taxa within these communities are sensitive to negative stressors introduced by humans, they’re ideal for assessing the quality of water.

Unfortunately, most macrozoobenthic taxa – such as stone-, may-, and caddisflies as well as most other invertebrates – are often found in juvenile larval life stages in these ecosystems, so they’re often difficult to identify based on morphology. With the DNA based metabarcoding method though, almost all taxa in a stream can be reliably identified up to species level using a standardised gene fragment. One key component of this strategy is the development of universal markers, which allow detection of the diverse macrozoobenthic groups.

Our new R package PrimerMiner provides a framework for obtaining sequence data from available reference databases and identifying suitable primer binding sites for marker amplification. The package makes this process quicker and easier. In the following pictures, we summarise the key steps of DNA metabarcoding.

To find out more about PrimerMiner, read our Methods in Ecology and Evolution article ‘PrimerMiner: an r package for development and in silico validation of DNA metabarcoding primers’. Like all Applications articles, this paper is freely available to everyone.