Biogeography Virtual Issue

Photo © An-Yi Cheng

© An-Yi Cheng

To coincide with the International Biogeography Society’s 2017 conference in Tuscon, Arizona, we have compiled a Virtual Issue that shows off new Methods in Ecology and Evolution articles in the field from a diverse array of authors.

To truly understand how species’ distributions vary through space and time, biogeographers often have to make use of analytical techniques from a wide array of disciplines. As such, these papers cover advances in fields such as evolutionary analysis, biodiversity definitions, species distribution modelling, remote sensing and more. They also reflect the growing understanding that biogeography can include experiments and highlight the increasing number of software packages focused towards biogeography.

This Virtual Issue was compiled by Methods in Ecology and Evolution Associate Editors Pedro Peres-Neto and Will Pearse (both of whom are involved in the conference). All of the articles in this Virtual Issue are free for a limited time and we have a little bit more information about each of the papers included here: Continue reading

Just snap it! Using Digital Cameras to Discover What Birds Eat

Post provided by Davide Gaglio and Richard Sherley

Digital photography has revolutionised the way we view ourselves, each other and our environment. The use of automated cameras (including camera traps) in particular has provided remarkable opportunities for biological research. Although mostly used for recreational purposes, the development of user-friendly, versatile auto-focus digital single lens reflex (DSLR) cameras allows researchers to collect large numbers of high quality images at relatively little cost.

These cameras can help to answer questions such as ‘What does that species feed its young?’ or ‘How big is this population?’, and can provide researchers with glimpses of rare events or previously unknown behaviours. We used these powerful research tools to develop a non-invasive method to assess the diets of birds that bring visible prey (e.g. prey carried in the bill or feet) back to their chicks. Continue reading

Uncertainty in biological monitoring : An interview with Viviana Ruiz-Gutierrez

David Warton (University of New South Wales) interviews Viviana Ruiz-Gutierrez (Cornell University) about her recent paper Uncertainty in biological monitoring: a framework for data collection and analysis to account for multiple sources of sampling bias. They discuss the main contributions of the paper, the effect false positives can have on occupancy estimates (when not accounted for) and her current position at Cornell. They finish off (in Spanish!) discussing the next step in her research agenda.

Continue reading

Being Certain about Uncertainty: Can We Trust Data from Citizen Science Programs?

Post provided by VIVIANA RUIZ GUTIERREZ

Citizen Science: A Growing Field

Thousands of volunteers around the world work on Citizen Science projects. ©GlacierNPS

Thousands of volunteers around the world work on Citizen Science projects. ©GlacierNPS

As you read this, thousands of volunteers of all ages and backgrounds are collecting information for over 1,100 citizen science projects worldwide. These projects cover a broad range of topics: from volunteers collecting samples of the microbes in their digestive tracts, to tourists providing images of endangered species (such as tigers) that are often costly to survey.

The popularity of citizen science initiatives has been increasing exponentially in the past decade, and the wealth of knowledge being contributed is overwhelming. For example, almost 300,000 participants have submitted around 300 million bird observations from 252 countries worldwide to the eBird program since 2002. Amazingly, rates of submissions have exceeded 9.5 million observations in a single month! Continue reading

Disentangling Ecosystem Functions: Our Imagination is the Limit

Post supplied by Tomas Roslin and Eleanor Slade (SPATIAL FOODWEB ECOLOGY GROUP, UNIVERSITY OF OXFORD & LANCASTER UNIVERSITY)

Studies of Action

Studies of ecosystem function are studies of action: of insects pollinating flowers, of predators killing pests – and in our case (well, more often than not) of beetles disposing of dung. To isolate the effects of the critters that we think will matter, we need to selectively include or exclude them. If we think a particular species or species group is responsible for a certain function, then we test this by keeping it in or out of enclosures. If we want to look at effects of species diversity, then we create communities of different species richness.

Research on dung beetles is far from boring. © Kari Heliövaara.

Research on dung beetles is far from boring. © Kari Heliövaara.

Depending on the target organism, this is sometimes easy and sometimes difficult. But it almost invariably proves to be fun! We enjoy the challenge of inventing new techniques for unravelling ecosystem functions sustained by insects. Working on dung beetles – as we tend to do – can be messy, but it’s definitely never boring.

In targeting ecosystem functions, the real trick is to make the experiments relevant. What we want to understand are the effects of changes occurring in the real world. All too often studies of ecosystem functions have been focused on artificial species pools in artificial settings. To see how we have solved this, we’ll give you a quick look at our dungy portfolio of approaches to date. Continue reading

Methods in Ecology and Evolution 2015: The Year in Review

Happy New Year! We hope that you all had a wonderful Winter Break and that you’re ready to start 2016. We’re beginning the year with a look back at some of our highlights of 2015. Here’s how last year looked at Methods in Ecology and Evolution.

The Articles

We published some amazing articles in 2015, too many to mention them all here. However, we would like to say a massive thank you to all of the authors, reviewers and editors who contributed to the journal last year. Without your hard work, knowledge and generosity, the journal would not be where it is today. We really appreciate all of your time and effort. THANK YOU!

mee312268_CoverOpportunities at the Interface between Ecology and Statistics

There was only one Special Feature in the journal this year, but it was a great one. Arising from the 2013 Eco-Stats Symposium at the University of New South Wales and guest edited by Associate Editor David Warton, Opportunities at the Interface between Ecology and Statistics was one of the highlights of 2015 for us. It consists of seven articles written collaboratively by statisticians and ecologists and highlights the benefits of cross-disciplinary partnerships. Continue reading

Building a Better Indicator

Post Provided by Charlie Outhwaite & Nick Isaac

Nick and Charlie are giving a presentation on ‘Biodiversity Indicators from Occurrence Records’ at the BES Annual Meeting on Wednesday 16 December at 13:30 in Moorfoot Hall. Charlie will also be presenting a poster on Tuesday 15 December between 17:00 and 18:30 on ‘Monitoring the UK’s less well-studied species using biological records‘ in the Lennox Suite.

Biodiversity Indicators are some of the most important tools linking ecological data with government policy. Indicators need to summarise large amounts of information in a format that is accessible to politicians and the general public. The primary use of indicators is to monitor progress towards environmental targets. For the UK, a suite of indicators are produced annually which are used to monitor progress towards the Aichi targets of the Convention on Biological Diversity as well as for European Union based commitments.  However, this is complicated by the fact that biodiversity policy within the UK is devolved to each of the four nations, so additional indicators have been developed to monitor the commitments of each country.

© Dave Colliers

© Dave Colliers

A range of biodiversity indicators exist within this suite covering the five strategic goals of the Convention; which include addressing the causes of biodiversity loss, reducing pressures on biodiversity and improving status of biodiversity within the UK. Within strategic goal C (improve status of biodiversity by safeguarding ecosystems, species and genetic diversity) there are currently 11 “State” indicators that use species data to monitor progress towards the targets underlying this goal. Most existing species based indicators use abundance data from large scale monitoring schemes with systematic protocols. However, there are other sources of data, such as occurrence records, that can offer an alternative if they are analysed using the appropriate methods. This post will discuss the development of species indicators for occurrence records to complement the current UK species based indicators, specifically relating to the C4b priority species indicator and the D1c pollinators indicator. Continue reading

High-Res Camera Surveys of Wildlife Colonies: The advantages over traditional approaches

Post provided by ALISTAIR HOBDAY (senior principal research scientist, CSIRO Australia), Tim Lynch (senior research scientist, CSIRO, Australia) and Rachael Alderman (wildlife biologist, Tasmanian Department of Primary Industry, Parks, Water and Environment, Australia).

Cameras and wildlife monitoring

A Gigapan camera setup to record images of an albatross colony. ©Alistair Hobday

A Gigapan camera setup to record images of an albatross colony. ©Alistair Hobday

Behavioural and ecological research and monitoring of wildlife populations are based on collection of field data. Demographic data, such as breeding frequency, birth rates and juvenile survival, have been critical in understanding population trends for a wide range of species.

Photography has been extensively used by field biologists and ecologists to gather these data and they have been quick to take up improvements in this technology. Many field programmes today use photography either for primary data collection or the communication of results. Advances in digital photography, image storage and transmission, image processing software and web-based dissemination of images have been extremely rapid in recent years, offering ecologists and biologists a range of powerful tools.

Digital imagery has been captured from a wide range of platforms, each of which has various advantages and limitations for biological study. The most remote images are captured from satellite-based sensors, which have been used to assess population abundance of large animals, such as elephant seals, or locate colonies of emperor penguins. Cameras mounted on aircraft can also provide large-scale perspectives but both of these platforms suffer from high cost, operational limitations due to weather, and limited temporal replication. Recent use of drones, while cheaper, still requires a person to be close to the survey location and can only be used in short bursts, typically lasting less than 20 minutes.

Land-based cameras – or those fixed onto animals – can track behaviour closely, but have low sample size as data tends to be collected at the scale of individual or small groups. To improve replication, fleets of remote cameras can be used or multiple images stitched together post hoc to form a montage. However, this increases cost, either for hardware or labour to manually construct panoramas. To date all these camera systems have had limits to their spatial and/or temporal resolution and, therefore, to the number of individuals covered. This restricts biological study at the population level. Continue reading

Issue 3.2

Aerial photograph of a forest

Cover image for issue 3.2
© Getzin & Wiegand – Biodiversity Exploratories

About the issue

With topics ranging from phylogenetic analysis to statistics and distribution modelling, conservation, citizen science, surveys, genetic and demographic models to avian biology, our issue 3.2 should be of interest to most ecologists and evolutionary biologists. The issue also contains 5 free applications.

About the cover

This very high-resolution image of a beech-dominated forest in central Germany was taken by an unmanned aerial vehicle (UAV) at 250 meter above ground. In this photograph one can clearly recognize individual tree crowns and even smallest gaps. UAVs are increasingly used for ecological surveys because they provide extremely fine resolutions and thus allow the identification of previously undetected object details. Furthermore, UAVs can be considered as very cost-effective tools for the acquisition of data that can be used also very flexibly.

In Assessing biodiversity in forests using very high-resolution images and unmanned aerial vehicles Getzin, Wiegand and Schöning tested the hypothesis that gap-structural information on aerial images can be principally used for the ecological assessment of understorey plant diversity in forests. The authors demonstrate that spatially implicit information on gap shape metrics is indeed sufficient to reveal strong dependency between gap patterns as a filter for incoming light and plant biodiversity. The study highlights that understorey biodiversity can be actively controlled by the spatial quality, and not just quantity, of tree removal. Thus, even under the same quota of tree harvesting, the promotion of complex and irregularly shaped gaps may be beneficial to foster biodiversity in forests.

Related

Evolution MegaLab

Modern technology offers some really exciting new opportunities for the use of citizen science, and in our newest video Jonathan Silvertown, Open University, gives a demonstration of Evolution MegaLab, a huge collaboration exploring the use of citizen science methods to undertake high-quality surveys of polymorphism in a wild species.


Jonathan demonstrates the site’s display of historical polymorphism data, some features designed to enable researchers to assess the reliability of volunteer-gathered data, and the process by which anyone can add newly gathered data to the project database.

In a paper recently published in Methods, the authors detail  the methodology used in setting up the Evolution MegaLab, analyse its more and less successful components, and provide a clear set of guidelines for any designer of future citizen science projects.

Related