Animal Behaviour through a Virtual Lens

Motion vision is an important source of information for many animals. It facilitates an animal’s movement through an environment, as well as being essential for locating prey and detecting predators. However, information on the conditions for motion vision in natural environments is limited.

To address this, Bian et al. have developed an innovative approach that combines novel field techniques with tools from 3D animation to determine how habitat structure, weather and motion vision influence animal behaviour. Their project focuses on Australia’s charismatic dragon lizards, and will place the animals’ motion displays in a visual-ecological context. The application of this approach goes well beyond this topic and the authors suggest the motion graphic technologies is a valuable tool for investigating the visual ecology of animals in a range of environments and at different spatial and temporal scales.

This video is based on the article ‘Integrating evolutionary biology with digital arts to quantify ecological constraints on vision-based behaviour by Bian et al.

Advertisements

Animation Meets Biology: Shedding New Light on Animal Behaviour

Below is a press release about the Methods paper ‘Integrating evolutionary biology with digital arts to quantify ecological constraints on vision-based behaviour‘ taken from the La Trobe University.

Ctenophorus fionni (Peninsula Dragon), male push up display - Copyright Jose Ramos, La Trobe University

Ctenophorus fionni (Peninsula Dragon), male push up display. © Jose Ramos, La Trobe University

Many animals rely on movement to find prey and avoid predators. Movement is also an essential component of the territorial displays of lizards, comprising tail, limb, head and whole-body movements.

For the first time, digital animation has been used as a research tool to examine how the effectiveness of a lizard’s territorial display varies across ecological environments and conditions. The new research was published today in the journal Methods in Ecology and Evolution.

A team from La Trobe University’s School of Life Sciences, led by Dr Richard Peters, worked with academics from Monash University’s Faculty of IT to create, using 3D animation, a series of varied environmental settings and weather conditions, comprising different plant environments and wind conditions, to quantify how lizard displays are affected by this variation. Continue reading

Soaring with Eagles, Swimming with Sharks: Measuring Animal Behaviour with Hidden Markov Models

Post provided by THEONI PHOTOPOULOU, MEGAN MURGATROYD, VIANEY LEOS-BARAJAS

Around the world there are concerns over the impacts of land use change and the developments (such as wind farms). These concerns have led to the implementation of tracking studies to better understand movement patterns of animals. Such studies have provided a wealth of high-resolution data and opportunities to explore sophisticated statistical methods for analysis of animal behaviour.

We use accelerometer data from aerial (Verreaux’s eagle in South Africa) and marine (blacktip reef shark in Hawai’i) systems to demonstrate the use of hidden Markov models (HMMs) in providing quantitative measures of behaviour. HMMs work really well for analysing animal accelerometer data because they account for serial autocorrelation in data. They allow for inferences to be made about relative activity and behaviour when animals cannot be directly observed too, which is very important.

In addition to this, HMMs provide data-driven estimates of the underlying distributions of the acceleration metrics – and the probability of switching between states – possibly as a function of covariates. The framework that we provide in ‘Analysis of animal accelerometer data using hidden Markov models‘ can be applied to a wide range of activity data. It opens up exciting opportunities for understanding drivers of individual animal behaviour.

The following images provide an inside view into the ecosystems in which the Verreaux’s eagle and blacktip reef shark reside.

Soaring with Veraux’s Eagles

Swimming with Blacktip Reef Sharks

To find out more, read our Methods in Ecology and Evolution article ‘Analysis of animal accelerometer data using hidden Markov models’.

New Associate Editor: Marie Auger-Méthé

Today, we are pleased to be welcoming a new member of the Methods in Ecology and Evolution Associate Editor Board. Marie Auger-Méthé joins us from Dalhousie University in Canada and you can find out a little more about her below.

Marie Auger-Méthé

Marie Auger-Méthé

“I am broadly interested in developing and applying statistical tools to infer behavioural and population processes from empirical data. My work tends to focus on marine and polar mammals, but the methods I develop are often applicable to a wide range of species and ecosystems. My recent work has centred on modelling animal behaviour using movement data and I generally analyse data with spatial and/or temporal structure.”

Marie has been reviewing for Methods in Ecology and Evolution for a few years and has contributed articles to some of the other journals of the British Ecological Society too. Earlier this month, her article titled ‘Evaluating random search strategies in three mammals from distinct feeding guilds‘ was published in the Journal of Animal Ecology. Continue reading