New Associate Editors

Today we are welcoming two new people to the Methods in Ecology and Evolution Associate Editor Board. Pierre Durand is joining us from the University of the Witwatersrand (South Africa) and Andrew Mahon joins from Central Michigan University (USA). You can find out more about Pierre and Andrew below.

Pierre Durand

Pierre Durand

“My research is broadly focussed on the evolution of complexity. Many of my projects are related to the evolutionary ecology of programmed cell death (PCD) in unicellular organisms; how PCD impacts microbial communities; and how the philosophy of levels of selection informs our understanding of PCD evolution. I have also examined other aspects of complexity evolution such as the origin of life and group formation in unicellular chlorophytes in response to predation. The model organisms I typically use are phytoplankton. With specific reference to submissions to Methods in Ecology and Evolution, I have used a range of methods in my research, including general cell and molecular biology tools, biochemical assays, microscopy, flow cytometry, bioinformatics and computational algorithms.”

The most current projects in Pierre’s laboratory concern: programmed cell death evolution and complexity in microbial communities; changes in phytoplankton abundance and diversity in harmful algal blooms, led by PhD candidate Andrew Ndhlovu (“A red tide forming dinoflagellate Prorocentrum triestinum: identification, phylogeny and impacts on St Helena Bay, South Africa” in review in Phycologia); and the genomics of the four-celled chlorophyte Tetrabaena socialis, led by PhD candidate Jonathan Featherson.

Andrew Mahon

Andrew Mahon

“I’m a molecular ecologist who uses genetic and genomic tools to ask questions ranging from surveillance and monitoring to biodiversity and phylogeography.  My work includes development of novel molecular detection tools and metabarcoding applications for aquatic invasive species.  I’m also interested in applying molecular tools to ask questions related to the evolution and biodiversity of benthic marine invertebrates in Antarctica.”

Andrew has recently been published in the journal Research Ideas and Outcomes (‘DNAqua-Net: Developing new genetic tools for bioassessment and monitoring of aquatic ecosystems in Europe‘) and in Environmental Science and Technology (‘Influence of Stream Bottom Substrate on Retention and Transport of Vertebrate Environmental DNA‘). He also has a manuscript in press with Ecology and Evolution (‘Geographic structure in the Southern Ocean circumpolar brittle star Ophionotus victoriae (Ophiuridae) revealed from mtDNA and single-nucleotide polymorphism data‘).

We are thrilled to welcome Pierre and Andrew to the Associate Editor Board and we look forward to working with them over the coming years.

Progressive Change BACIPS: Estimating the Effects of Environmental Impacts over Time

Post provided by Lauric Thiault

BACIPS (Before-After Control-Impact Paired Series) is probably the best-known and most powerful approach to detect and quantify human interventions on ecosystems. In BACIPS designs, Impact and Control sites are sampled simultaneously (or nearly so) multiple times Before and After an intervention. For each sampling survey conducted Before or After, the difference in the sampled response variable (e.g. density) is calculated. Before and After differences are then compared to provide a measure of the effect of the intervention, assuming that the magnitude of the induced change is constant through time. However, many interventions may not cause immediate, constant changes to a system.

We developed a new statistical approach – called Progressive-Change BACIPS (Before-After Control-Impact Paired-Series) – that extends and generalises the scope of BACIPS analyses to time-dependent effects. After quantifying the statistical power and accuracy of the method with simulated data sets, we used marine and terrestrial case studies to illustrate and validate their approach. We found that the Progressive-Change BACIPS works pretty well to estimate the effects of environmental impacts and the time-scales over which they operate.

The following images show the diversity of contexts in which this approach can be undertaken.

To find out more about Progressive Change BACIPS, read our Methods in Ecology and Evolution article ‘Progressive-Change BACIPS: a flexible approach for environmental impact assessment’.

The Field Guide to Sequence-Based Identification of Biodiversity: An Interview with Simon Creer

In a new Methods in Ecology and Evolution podcast, Georgina Brennan (Bangor University) interviews Simon Creer (Bangor University) about his article ‘The ecologist’s field guide to sequence-based identification of biodiversity‘. They talk about about where the idea for the paper came from, what it’s aim are and who will benefit from it. We hear how new sequences can improve and enhance current biomonitoring programmes (and make them quicker and cheaper).

To find out more about Sequence-based Identification of Biodiversity, read the Open Access Methods in Ecology and Evolution article ‘The ecologist’s field guide to sequence-based identification of biodiversity‘.

 

Issue 8.3

Issue 8.3 is now online!

The March issue of Methods is now online!

This issue contains two Applications articles and one Open Access article. These three papers are freely available to everyone, no subscription required.

 Solo: Solo audio recorders are inexpensive, easy to construct and record audible sound continuously for around 40 days. The paper also has a video tutorial explaining how to assemble the required hardware and comes with a companion website with more information.

 The third dimension: A novel design to obtain three-dimensional data on the movements of aquatic organisms at depths of up to 140m. The set-up consists of two synchronised high-speed cameras fixed to two articulated arms and can be used for any underwater applications that require synchronized video recordings of medium- to large-sized animals.

Continue reading

A Homage to EC Pielou: One of the 20th Century’s Most Accomplished Scientists

Post provided by Daniel Simberloff, Nathan Sanders and Pedro Peres-Neto

Evelyn Chrystalla ‘E.C.’ Pielou. © Sharon Niscak

Evelyn Chrystalla ‘E.C.’ Pielou. © Sharon Niscak

Evelyn Chrystalla ‘E.C.’ Pielou (February 20, 1924 – July 16, 2016) – a towering figure in ecology – was a key pioneer in the incorporation of statistical rigor into biogeography and ecology. She devised many important statistical hypotheses tests for spatial arrangements and patterns ranging in scale from individual plants in a field through to elevational zonation of vegetation to ranges of groups of species distributed over regional through to continental-scale ranges. Her research has provided the impetus for biogeographical analyses for generations.

She published ten books, including several long after her formal retirement in 1988. Her book Biogeography (1979) is a masterpiece. It covers historical biogeography (including inferences from cladograms, which were just beginning to be a hot topic at that time) and ecological biogeography with keen insight and treats topics like long-distance dispersal (that had largely been the subject of just-so stories) with her characteristic statistical rigor. Her books on mathematical ecology have a strong emphasis on models of spatial pattern and ways to estimate biodiversity, and her methods – including the famous Pielou‘s evenness index – are still widely used. Continue reading

Movement Ecology: Stepping into the Mainstream

Post provided by Theoni Photopoulou

“Movement is the glue that ties ecological processes together”
from Francesca Cagnacci et al. 2010

CTD-SRDL telemetry tags being primed for deployment. ©Theoni Photopoulou

CTD-SRDL telemetry tags being primed for deployment. ©Theoni Photopoulou

Movement ecology is a cross-disciplinary field. Its main aim is to quantitatively describe and understand how movement relates to individual and population-level processes for resource acquisition and, ultimately, survival. Today the study of movement ecology hinges on two 21st century advances:

  1. Animal-borne devices/tags (biologging science, Hooker et al., 2007) and/or remote sensing technology to quantify movement and collect data from remote or otherwise challenging environments
  2. Computational power sufficient to manipulate, process and analyse substantial volumes of data

Although datasets often involve small numbers of individuals, each individual can have thousands – sometimes even millions – of data points associated with it. Study species have tended to be large birds and mammals, due to the ease of tag attachment. However, the trend for miniaturisation of tags and the development of remote detection technologies (such as radar, e.g. Capaldi et al., 2000), have allowed researchers to track and study ever smaller animals. Continue reading

We Shall Overcome, Someday! Tips for Breaking Academia’s Glass Ceiling

Post provided by Nibedita Mukherjee

Breaking academia’s glass ceiling

Breaking academia’s glass ceiling

Women in academia are special. This isn’t because of their abundance and diversity (or lack of it in some circles) but rather because of the challenges faced by women. As an early career woman researcher, I have had the privilege of knowing and learning from some incredibly inspirational women scientists. In this post – peppered with the lyrics of Joan Baez – we will meet three of these exceptional scientists working in three different realms (terrestrial, estuarine and marine). I hope that their strengths will be as inspirational to others – as they have been to me – and that in the years to come, we, as women, shall overcome the glass cliffs and glass ceilings of academia.

We’ll Walk Hand in Hand, Some Day #Equality

In the terrestrial realm of tropical forests, researchers often have to work with government officials (for instance, the forest department). Challenges of gender equality can be particularly stark in these workplaces. A key challenge for women in such a setting is not being considered a professional. Female researchers are far too often underestimated: lecturers assumed to be trainees, post-doctoral researchers mistaken for students. Continue reading

Carson’s Call: An Inspiration for Ecologists Working in a Post-Truth World

Post provided by Will Pearse

Rachel Carson (1940) Fish & Wildlife Service employee photo.

Rachel Carson (1940) Fish & Wildlife Service employee photo.

I can’t think of a more inspirational and influential ecologist than Rachel Carson. Nearly fifty years ago she released a book called Silent Spring, which argued that pesticides such as DDT were cascading up through food chains causing the death or sterilisation of birds and other animals. The publication of her book provoked public debate, likely in part because it was serialised in The New Yorker, and led to a paradigm shift in US and (arguably) global pest control policy.

With the full support of the scientific community to verify her facts and arguments, she was able to defeat the chemical industry’s backlash and galvanise public opinion in her favour. The 2005 Stockholm Convention, in which DDT was banned from agricultural use, would likely have never happened if it were not for her work.

“In a post-truth world where trust in the scientific process is being eroded almost daily, Rachel Carson is a perfect example of how we can speak out and be heard while still being scientists.”

Continue reading

Influential Women in Ecological Network Research

Post provided by Katherine Baldock and Luísa G. Carvalheiro

luisa-carvalheiro-butterfly

©Luísa G. Carvalheiro

Ecological networks represent interactions between different biotic units in an ecosystem and are becoming an increasingly popular tool for describing and illustrating a range of different types of ecological interactions. Food webs – which provide a way to track and quantify the flow of energy and resources in ecosystems – are among the most studied type of ecological networks. These networks usually represent species (nodes) which are connected by pairwise interactions (links) and they play a central role in improving our understanding of ecological and evolutionary dynamics.

Historically, food webs described antagonistic relationships (e.g. plant-herbivore or host-parasitoid networks) but the approach has been developed in recent years to include mutualistic networks (e.g. plant-pollinator networks, phorophyte-epiphyte networks). The development of network ecology, including ever more sophisticated methods to analyse ecological communities, has been driven forward by an enthusiastic community of ecologists, theoreticians and modellers working together to enhance our understanding of how communities interact.

In this blog post, we’ll describe the important role played by female scientists in the development of network ecology, focusing on the contributions by two ground-breaking ecologists and also highlighting contributions from a range of other scientists working in this field. Continue reading

Soaring with Eagles, Swimming with Sharks: Measuring Animal Behaviour with Hidden Markov Models

Post provided by THEONI PHOTOPOULOU, MEGAN MURGATROYD, VIANEY LEOS-BARAJAS

Around the world there are concerns over the impacts of land use change and the developments (such as wind farms). These concerns have led to the implementation of tracking studies to better understand movement patterns of animals. Such studies have provided a wealth of high-resolution data and opportunities to explore sophisticated statistical methods for analysis of animal behaviour.

We use accelerometer data from aerial (Verreaux’s eagle in South Africa) and marine (blacktip reef shark in Hawai’i) systems to demonstrate the use of hidden Markov models (HMMs) in providing quantitative measures of behaviour. HMMs work really well for analysing animal accelerometer data because they account for serial autocorrelation in data. They allow for inferences to be made about relative activity and behaviour when animals cannot be directly observed too, which is very important.

In addition to this, HMMs provide data-driven estimates of the underlying distributions of the acceleration metrics – and the probability of switching between states – possibly as a function of covariates. The framework that we provide in ‘Analysis of animal accelerometer data using hidden Markov models‘ can be applied to a wide range of activity data. It opens up exciting opportunities for understanding drivers of individual animal behaviour.

The following images provide an inside view into the ecosystems in which the Verreaux’s eagle and blacktip reef shark reside.

Soaring with Veraux’s Eagles

Swimming with Blacktip Reef Sharks

To find out more, read our Methods in Ecology and Evolution article ‘Analysis of animal accelerometer data using hidden Markov models’.