When Measuring Biodiversity, Do Individuals Matter?

Post provided by Samuel RP-J Ross

Close up of a black-capped babbler (Pellorneum capistratum), one of the species included in our study.

Close up of a black-capped babbler (Pellorneum capistratum), one of the species in our study.

Our newly-developed method simulates intraspecific trait variation when measuring biodiversity. This gives us an understanding of how individual variation affects ecosystem processes and functioning. We were able to show that accounting for within-species variation when measuring functional diversity can reveal details about ecological communities which would otherwise remain unseen. Namely, we found a negative impact of selective-logging on birds in Borneo when accounting for intraspecific variation which we could not detect when ignoring intraspecific variation.

Why Biodiversity Matters

Biodiversity is important for many reasons. One of the main reasons is its contribution to the range of goods and services provided by ecosystems (i.e. ecosystem services) that we can take advantage of, such as natural food resources or climatic regulation. It’s generally believed that biodiversity contributes to these services by increasing and maintaining ‘ecosystem functioning’ – often defined as the rate at which ecosystems are turning input energy (e.g. sunlight) into outputs (e.g. plant biomass). Continue reading

Capturing the Contribution of Rare and Common Species to Turnover: A Multi-Site Version of Generalised Dissimilarity Modelling

Post provided by Guillaume Latombe and Melodie A. McGeoch

Understanding how biodiversity is distributed and its relationship with the environment is crucial for conservation assessment. It also helps us to predict impacts of environmental changes and design appropriate management plans. Biodiversity across a network of local sites is typically described using three components:

  1. alpha (α) diversity, the average number of species in each specific site of the study area
  2. beta (β) diversity, the difference in species composition between sites
  3. gamma (γ) diversity, the total number of species in the study area.
Two tawny frogmouths, a species native to Australia. ©Marie Henriksen.

Two tawny frogmouths, a species native to Australia. ©Marie Henriksen.

Despite the many insights provided by the combination of alpha, beta and gamma diversity, the ability to describe species turnover has been limited by the fact that they do not consider more than two sites at a time. For more than two sites, the average beta diversity is typically used (multi-site measures have also been developed, but suffer shortcomings, including difficulties of interpretation). This makes it difficult for researchers to determine the likely environmental drivers of species turnover.

We have developed a new method that combines two pre-existing advances, zeta diversity and generalised dissimilarity modelling (both explained below). Our method allows the differences in the contributions of rare versus common species to be modelled to better understand what drives biodiversity responses to environmental gradients. Continue reading

Issue 8.4: Technological Advances at the Interface of Ecology and Statistics

Issue 8.4 is now online!

The April issue of Methods, which includes our latest Special Feature – “Technological Advances at the Interface of Ecology and Statistics” – is now online!

This new Special Feature is a collection of five articles (plus an Editorial from Guest Editor David Warton) inspired by the December 2015 Eco-Stats conference at the University of New South Wales in Australia. It shows how interdisciplinary collaboration help to solve problems around estimating biodiversity and how it changes over space and time.

The five articles are based on joint talks given at the conference. They focus on:

As David Warton states in his Editorial, “interdisciplinary collaboration and the opportunities offered by recent technological advances have potential to lead to interesting and sometimes surprising findings, and will continue to be fertile ground for scientists in the foreseeable future”. Meetings like Eco-Stats 15 and Special Features like this one will, hopefully, help to encourage these sorts of collaborative research projects.

All of the articles in the ‘Technological Advances at the Interface of Ecology and Statistics‘ Special Feature will be freely available for a limited time.
Continue reading

Microphone Backpacks for Individual-level Acoustic Recordings

To understand the factors shaping vocal communication, we need reliable information about the communicating individuals on different levels. First, vocal behaviour should be recorded from undisturbed animals in meaningful settings. Then we have to separate and assign the individuals’ vocalisations. Finally, the precise timing of vocal events needs to be stored.

Microphone backpacks allow researchers to record the vocal behaviour of individual animals in naturalistic settings – even in acoustically challenging environments! In the video below, Lisa Gill, Nico Adreani and Pietro D’Amelio demonstrate the lightweight radio-transmitter microphone backpacks that have been developed and built at the Max Planck Institute for Ornithology, Seewiesen, Department of Behavioural Neurobiology. They show the attachment and setup of this system in detail, evaluate its behavioural effects, and discuss what makes it so useful for studying vocal communication, especially in small animals.

This video is based on the article ‘A minimum-impact, flexible tool to study vocal communication of small animals with precise individual-level resolution‘ by Gill et al.

 

piecewiseSEM: Exploring Nature’s Complexity through Statistics

Post provided by Jonathan S. Lefcheck

Nature is complicated. As a scientist, you might say, “Well, duh,” but as students of nature, this complexity is probably the single greatest challenge we must face in trying to dissect the hows and whys of the natural world.

History is a Set of Lies Agreed Upon: Moving beyond ANOVA

For a long time, we tried to strip this complexity away by conducting very controlled experiments adhering to rigid designs. The ‘two-way fully-crossed analysis of variance’ will be familiar to anyone who has taken even the most basic stats class, because, for many decades, it was the gold standard for any experiment.

It might be tough to manipulate this whole reef.

The problem is: the real world doesn’t adhere to an ANOVA design. By this, I mean that by their very nature, manipulative experiments are artificial. It’s hard—if not impossible—to manipulate an entire forest or a coral reef, and as such, we retreat to more tractable, smaller investigations. There is certainly a lot of value in determining whether the phenomenon can occur, but these tightly regulated designs say nothing about whether they are likely to occur, particularly at the scales most relevant to humanity.

To get at the latter point, we must leave the safety of the greenhouse. However, our trusty ANOVA toolbox isn’t very useful anymore, because real-world data often violate the most basic statistical assumptions, not to mention the presence of numerous additional influences that may drive spurious relationships. Continue reading

Googling for Ecological Answers: Using the Morphic Web Application

Post provided by Gabriella Leighton

Online Images: A Treasure Trove of Ecological Data

In the proclaimed ‘information age’, where answers are available at the click of a button or a swipe of a finger, we have become accustomed to the ability to get an almost instant grasp of any topic. Other fields are already making use of this wealth of easily accessible online data, but biologists and ecologists tend to let it slip by. However, this attitude is slowly beginning to change. Some ecological and evolutionary studies are emerging that have used the internet to gather data – through online citizen science projects (e.g. Evolution MegaLab) or databases (e.g. using Google Trends) – but few have used existing data, particularly publicly available data from image repositories.

We were curious to apply the concept of using existing images on the internet to a fascinating visual biological phenomenon: colour polymorphism (or the occurrence of multiple discrete colour phenotypes). To do this, we planned to exploit an existing penchant people have for uploading photographs of animals to the Internet.

Our search phrases included the common and scientific name of the species, as well as a location-specific term

Our search phrases included the common and scientific name of the species, as well as a location-specific term

Continue reading

2016 Robert May Prize Winner: Gabriella Leighton

The Robert May Prize is awarded annually for the best paper published in Methods in Ecology and Evolution by an Early Career Researcher. We’re delighted to announce that the 2016 winner is Gabriella Leighton, for her article ‘Just Google it: assessing the use of Google Images to describe geographical variation in visible traits of organisms.

‘Just Google it’ marks an important step in converting ecology to an armchair science. Many species (e.g. owls, hawks, bears) are difficult, time-consuming, expensive and even dangerous to observe. It would be a lot easier if we didn’t have to spend time, energy and risk lives having to observe organisms in the field! Continue reading

Decoupling Functional and Phylogenetic Dissimilarity between Organisms

Francesco de Bello describes the main elements of the method he has recently published in Methods in Ecology and Evolution. The method aims at decoupling and combining functional trait and phylogenetic dissimilarities between organisms. This allows for a more effective combination of non-overlapping information between phylogeny and functional traits. Decoupling trait and phylogenetic information can also uncover otherwise hidden signals underlying species coexistence and turnover, by revealing the importance of functional differentiation between phylogenetically related species.

In the video Francesco visually represents what the authors think their tool is doing with the data so you can see its potential. This method can provide an avenue for connecting macro-evolutionary and local factors affecting coexistence and for understanding how complex species differences affect multiple ecosystem functions.

This video is based on the article ‘Decoupling phylogenetic and functional diversity to reveal hidden signals in community assembly‘ by de Bello et al.

 

Progressive Change BACIPS: Estimating the Effects of Environmental Impacts over Time

Post provided by Lauric Thiault

BACIPS (Before-After Control-Impact Paired Series) is probably the best-known and most powerful approach to detect and quantify human interventions on ecosystems. In BACIPS designs, Impact and Control sites are sampled simultaneously (or nearly so) multiple times Before and After an intervention. For each sampling survey conducted Before or After, the difference in the sampled response variable (e.g. density) is calculated. Before and After differences are then compared to provide a measure of the effect of the intervention, assuming that the magnitude of the induced change is constant through time. However, many interventions may not cause immediate, constant changes to a system.

We developed a new statistical approach – called Progressive-Change BACIPS (Before-After Control-Impact Paired-Series) – that extends and generalises the scope of BACIPS analyses to time-dependent effects. After quantifying the statistical power and accuracy of the method with simulated data sets, we used marine and terrestrial case studies to illustrate and validate their approach. We found that the Progressive-Change BACIPS works pretty well to estimate the effects of environmental impacts and the time-scales over which they operate.

The following images show the diversity of contexts in which this approach can be undertaken.

To find out more about Progressive Change BACIPS, read our Methods in Ecology and Evolution article ‘Progressive-Change BACIPS: a flexible approach for environmental impact assessment’.

The Field Guide to Sequence-Based Identification of Biodiversity: An Interview with Simon Creer

In a new Methods in Ecology and Evolution podcast, Georgina Brennan (Bangor University) interviews Simon Creer (Bangor University) about his article ‘The ecologist’s field guide to sequence-based identification of biodiversity‘. They talk about about where the idea for the paper came from, what it’s aim are and who will benefit from it. We hear how new sequences can improve and enhance current biomonitoring programmes (and make them quicker and cheaper).

To find out more about Sequence-based Identification of Biodiversity, read the Open Access Methods in Ecology and Evolution article ‘The ecologist’s field guide to sequence-based identification of biodiversity‘.