‘Size’ and ‘Shape’ in the Measurement of Multivariate Proximity

Ordination and clustering methods are widely applied to ecological data that are non-negative (like species abundances or biomasses). These methods rely on a measure of multivariate proximity that quantifies differences between the sampling units (e.g. individuals, stations, time points), leading to results such as:

  1. Ordinations of the units, where interpoint distances optimally display the measured differences
  2. Clustering the units into homogeneous clusters
  3. Assessing differences between pre-specified groups of units (e.g. regions, periods, treatment–control groups)

In this video, Michael Greenacre introduces his new article, ‘‘Size’ and ‘Shape’ in the Measurement of Multivariate Proximity’, published in Methods in Ecology and Evolution, May 2017. In the context of species abundances, for example, he explains how much a chosen proximity measure captures the difference in “size” between two samples, i.e. difference in overall abundances, and differences in “shape”, i.e. differences in compositions or relative abundances.  He shows that the popular Bray-Curtis dissimilarity inevitably includes a part of the “size” difference in its measurement of multivariate proximity.

This video is based on the article ‘‘Size’ and ‘shape’ in the measurement of multivariate proximity‘ by Michael Greenacre.

Advertisements

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s