Poles Apart Yet Poles Together

Post provided by Matt Davey

Earlier this summer, I attended a rather unique conference – Polar2018 in Davos, Switzerland. This conference brought together the two major committees that help govern and coordinate Arctic, Alpine and Antarctic research around the globe – the Scientific Committee for Antarctic Research (SCAR) – who also celebrates their 60th Anniversary this year – and the International Arctic Science Committee (IASC).

With nearly 2500 delegates over one week it was impressive how talks and sessions kept to time, posters went up and came down, and coffee (good coffee, served with correctly cooked croissants!) was served. The level of organisation you’d hope to see at all conferences, big or small. The venue for Polar2018 was also home to the G7 world economic forum summits and staff seemed at ease with only having 2500 delegates to deal with…

From day one, there was persistent message throughout the conference. Not only does the rest of the human populated world affect the polar environments, but in response, any change in polar ecosystem and environment functioning (biological and non-biological) has a large knock-on effect on the rest of the world. Continue reading

Advertisements

The Future of Research and Publishing in Evolutionary Biology

Are you coming to the Evolution 2018 in Montpellier? Want to share your views on the future of evolution research? Fancy some beer, wine and snacks on us?

We know the history of research and publications in evolution, but what will the future hold?

We would like to invite you to participate in an exciting focus session centred around what the future research landscape might look like through the eyes of up-and-coming researchers.

When: Tuesday 21 August between 14:00 and 16:00

Where:  Bar Les Loges, Grand Hotel du Midi, Montpellier

We’re looking for active researchers (based in universities, research institutes, government agencies, NGOs or the private sector) within about 10 years of having been awarded a PhD. Experienced PhD students who have published in peer reviewed academic journals are also welcome to join. Continue reading

BES Macroecology 2018: Macroecology and Data

Post provided by Faith Jones

© Matthew Leonard

© Matthew Leonard

The annual BES Macroecology Special Interest Group conference took place on the 10th and 11th of July. This year the meeting was in St Andrews, Scotland. Over 100 delegates came together in this old University town to discuss the latest research and concepts in macroecology and macroevolution.

Remote Sensing, Funky Koalas and a Science Ceilidh

The conference opened with a plenary by Journal of Applied Ecology Senior Editor Nathalie Pettorelli from ZSL. She talked about how remote sensing can be used in ecological and conservation studies. In the other plenary talks, we heard from:

  • Methods in Ecology and Evolution Senior Editor Bob O’Hara from NTNU on, among other things, how useful occupancy models are when “occupancy” is such a broad term
  • Anne Magurran from the University of St Andrews discussing turnover and biodiversity change
  • Brian McGill from the University of Maine talking about the data-driven approach to the “biodiversity orthodoxy” and challenging the conventional wisdom about macroecological change

We also hosted a student plenary speaker, Alex Skeels, who gave a lively talk about diversification and geographical modelling using some pretty funky disco koalas. In addition to these talks, there were 60 short 5 minutes talks and 20 posters. Continue reading

Improving Biodiversity Monitoring using Satellite Remote Sensing

Increased access to satellite imagery and new developments in remote sensing data analyses can support biodiversity conservation targets by stepping up monitoring processes at various spatial and temporal scales. More satellite imagery is becoming available as open data. Remote sensing based techniques to capitalise on the information contained in spatially-explicit species data, such as Global Biodiversity Information Facility (GBIF), are developing constantly. Current free and open data policy will have a dramatic impact on our ability to understand how biodiversity is being affected by anthropogenic pressures, while improving our ability to predict the consequences of changes at different scales.

In our latest Special Feature, ‘Improving Biodiversity Monitoring using Satellite Remote Sensing‘, Sandra Luque, Nathalie Pettorelli, Petteri Vihervaara and Martin Wegmann explain why tackling this challenge is worth doing. The articles demonstrate how combining satellite remote sensing data with ground observations and adequate modelling can help to give us a better understanding of natural systems, leading to improved management practices. They focus on three key conservation challenges:

  1. Monitoring of biodiversity
  2. Developing an improved understanding of biodiversity patterns
  3. Assessing biodiversity’s vulnerability to climate change

Continue reading

Also of Interest… Journal of Applied Ecology

Post provided by Aaron M. Ellison

The Struggle is Real: Finding Interesting and Relevant Articles

Where to start? We are awash in data, information, papers, and books. There are hundreds of ecological and environmental journals published regularly around the world; the British Ecological Society alone publishes five journals and is now accepting submissions for a sixth (more information on People and Nature here).

None of us has time even to click on the various articles flagged by alerts, feeds, or keywords, and few even browse tables of contents (which are becoming irrelevant as we move to DOIs and immediate-online publication). Increasingly, we rely on our friends, colleagues, students, and mentors to point us towards papers we might find interesting – further evidence, I suppose, of the importance of good networks for knowledge creation and scientific understanding.

Regular readers of Methods in Ecology and Evolution or this Methods blog may not realise how many methodological papers are published routinely in our BES sister journals. In this inaugural posting of Also of interest…, I highlight three papers recently published in Journal of Applied Ecology that introduce and apply new, model-based methodology to interesting ecological questions. The specific methods are like many seen in the pages of Methods in Ecology and Evolution and suggest general approaches for modelling and studying complex ecological and environmental phenomena. Continue reading

TV Coverage of Cycling Races Can Help Document the Effects of Climate Change

Archive footage of the Tour of Flanders obtained by Flemish broadcaster VRT - Flanders Classics

Archive footage of the Tour of Flanders obtained by Flemish broadcaster VRT – Flanders Classics

Analysing nearly four decades of archive footage from the Tour of Flanders, researchers from Ghent University have been able to detect climate change impacts on trees. Their findings were published today in the journal Methods in Ecology and Evolution.

Focusing on trees and shrubs growing around recognisable climbs and other ‘landmarks’ along the route of this major annual road cycling race in Belgium, the team looked at video footage from 1981 to 2016 obtained by Flemish broadcaster VRT. They visually estimated how many leaves and flowers were present on the day of the course (usually in early April) and linked their scores to climate data. Continue reading

Editor Recommendation: Accounting for Genetic Differences among Unknown Parents in Microevolutionary Studies

Post provided by Laura Graham

Song sparrows show substantial genetic variation in multiple life-history traits. Application of ‘genetic group animal models’ show that this is partly due to genetic effects of immigrants © Jane Reid

Song sparrows show genetic variation in multiple life-history traits. Application of ‘genetic group animal models’ show this is partly due to genetic effects of immigrants ©Jane Reid

Understanding how wild populations respond and adapt to environmental change is a key question in evolutionary biology. To understand this, we need to be able to separate genetic and environmental effects on phenotypic variation. Statistical ‘animal models’, which can do just this, have revolutionised the field of quantitative genetics. A lack of full knowledge of individual pedigrees can lead to severe bias in quantitative genetic parameter estimates though – particularly when genetic values for focal traits vary non-randomly in unknown parents.

In the Journal of Animal Ecology ‘How To…’ paper “Accounting for genetic differences among unknown parents in microevolutionary studies: how to include genetic groups in quantitative genetic animal models”, the extent of this bias is highlighted. Matthew Wolak and Quantitative Ecology 2018 keynote speaker Jane Reid show how genetic group methods – a technique developed in agricultural science – can be employed to minimise it. Continue reading

Editor Recommendation: Lianas and Soil Nutrients Predict Fine-Scale Distribution of Above-Ground Biomass in a Tropical Moist Forest

Post provided by Laura Graham

©Groume

©Groume

Datasets used by quantitative ecologists are getting more and more complex. So we need more complex models, such as hierarchical and complex spatial models. Typically, Bayesian approaches such as Markov chain Monte Carlo have been used. But these methods can be slow, making it infeasible to fit some models.

New developments in Integrated nested Laplace approximation (INLA) have made some of these complex models much faster to fit. Dedicated R packages (R-INLA and inlabru) make coding these Bayesian models much more straightforward. Also, INLA lets you fit of a class of models which allow for computationally efficient and flexible modelling of spatial data. Continue reading

Statistical Ecology Virtual Issue

To celebrate the International Statistical Ecology Conference and British Ecological Society Quantitative Ecology Annual Meeting, Laura Graham and Susan Jarvis have compiled a virtual issue celebrating all things statistical and quantitative in ecology.

Statistical and quantitative methods within ecology have increased substantially in recent years. This rise can be attributed both to the growing need to address global environmental change issues, as well as the increase in data sources to address these challenges. Continue reading

Overcoming the Challenges of Studying Soil Nematodes: A New Approach with Implications for All (Soil) Organisms

Post provided by Stefan Geisen

(Soil) Nematodes

“…if all the matter in the universe except the nematodes were swept away, our world would still be dimly recognizable, and if, as disembodied spirits, we could then investigate it, we should find its mountains, hills, vales, rivers, lakes, and oceans represented by a film of nematodes…” (Cobb 1914)

He may have said it more than a century ago but we now, more than ever, realise that Nathan Augustus Cobb was right. Nematodes are by far the most abundant animals soil, freshwater and marine ecosystems. These tiny worms are barely visible to the human eye (if they’re visible at all), hundreds can inhabit a single gram of soil . Their similar shape might lead you to think that they’re all alike, but that’s not the case. More than 25,000 species have been identified and estimates put their entire species diversity in the 100,000s.

Some common nematode species found in most soils. a) Plectus sp; b) Aphelenchus sp; c) Helicotylenchus sp; d) Thonus sp; e) Mononchus sp; © Wageningen University, Laboratory of Nematology, NL; Hanny van Megen

Some common nematode species found in most soils. a) Plectus sp, b) Aphelenchus sp, c) Helicotylenchus sp, d) Thonus sp, e) Mononchus sp. © Wageningen University, Laboratory of Nematology, NL; Hanny van Megen

This taxonomic and functional diversity has boosted nematodes to become useful bioindicators for soil quality. Nematodes perform many different functions in both terrestrial and aquatic ecosystems. These are mainly defined by what they eat:

  • Bacteria/Fungi: Many nematode groups eat bacteria and fungi. They control the population of these organisms and keep them active.
  • Plants: Plant feeders are the unwanted guests in agricultural systems as well as in our gardens. They can destroy entire harvests by piercing into or infiltrating roots.
  • Omnivores/Predators: Many nematode species prey on other smaller organisms including smaller nematodes and control their abundances.
  • Parasites: These species inhabit other larger organisms and can act as biocontrol agents.

Continue reading