New Associate Editor: Michael Morrissey

Today, we are pleased to be welcoming a new member of the Methods in Ecology and Evolution Associate Editor Board. Michael Morrissey joins us from the University of St Andrews in Scotland and you can find out a little more about him below.

Michael Morrissey

“I am an evolutionary quantitative geneticist. I am interested in the selection, genetics, and evolutionary trajectories of traits in natural populations. I typically work at the interface of statistics, evolutionary theory, and empirical problems.”

Michael has been an active reviewer for Methods for the past few years and has provided excellent comments and recommendations on a number of papers. He also had an article – ‘In search of the best methods for multivariate selection analysis‘ – published in the journal in 2014 (which will become freely available in October this year).
Continue reading

Creating Bigger, Better and More Joined-up Habitat Networks

Below is a press release about the Methods paper ‘How to manipulate landscapes to improve the potential for range expansion‘ taken from the University of Liverpool.

©Bidgee

©Bidgee

Scientists at the University of Liverpool have developed a new ‘route planner’ tool that could help conservationists aid the movement of species as they adapt to a changing climate.

The environmental ranges of many animal and plant species are starting to alter with climate change, as temperatures change and force species to migrate to more suitable climes.

To be able to do this successfully, they will need sufficient habitat in their existing range, their future range, and any intermediate areas to enable populations to survive and thrive. Many conservation initiatives to restore habitats and increase connectivity are trying to address this issue. However, existing modelling tools mainly treat the landscape as static, and it is difficult to use these to plan restoration. Continue reading

Estimating Shifts in Species Distribution: An Interview with James Thorson

David Warton (University of New South Wales) interviews James Thorson (NOAA) about his paper Model-based inference for estimating shifts in species distribution, area occupied and centre of gravity. The article is included in the August 2016 issue of Methods in Ecology and Evolution.  They discuss how to estimate changes in distribution shifts accounting for changes in the spatial distribution of sampling intensity, James’ current workplace NOAA, his academic background and what trouble he is planning to get up to next.

Continue reading

Biogeographic Regions: What Are They and What Can They Tell Us?

Post provided by Leonardo Dapporto, Gianni Ciolli, Roger L.H. Dennis, Richard Fox and Tim G. Shreeve

Every species in the world has a unique geographic distribution. But many species have similar ranges. There are many things that can cause two (or more) species to have similar ranges – for example shared evolutionary histories, physical obstacles (mountains, oceans etc.) or ecological barriers limiting their dispersal. As a consequence, different regions of the globe are inhabited by different sets of living organisms.

In the mid-19th century ecologists recognised that the earth could be divided into different biogeographic regions. Alfred Russel Wallace (1823–1913) played a key role in defining and recognising biogeographic regions. He improved the existing maps of  biogeographic regions and provided basic rules to identify them. His observation that some of these regions are home to similar species, despite being far away from each other and separated by significant barriers was the inspiration for Alfred Wegener’s theory of continental drift. In more recent years regionalisation has been used to understand the spatial drivers of biological evolution and to protect those regions characterised by particularly unique flora and fauna.

The biogeographic regions identified by Alfred Russel Wallace from The Geographical Distribution of Animals (1876)

The biogeographic regions identified by Alfred Russel Wallace from The Geographical Distribution of Animals (1876)

Despite the long history of biological regionalisation, the methods to identify biogeographic regions are still being improved. We are currently working in this exciting field of research and recently published ‘A new procedure for extrapolating turnover regionalization at mid-small spatial scales, tested on British butterflies’ in Methods in Ecology and Evolution. Continue reading

Uncertainty in biological monitoring : An interview with Viviana Ruiz-Gutierrez

David Warton (University of New South Wales) interviews Viviana Ruiz-Gutierrez (Cornell University) about her recent paper Uncertainty in biological monitoring: a framework for data collection and analysis to account for multiple sources of sampling bias. They discuss the main contributions of the paper, the effect false positives can have on occupancy estimates (when not accounted for) and her current position at Cornell. They finish off (in Spanish!) discussing the next step in her research agenda.

Continue reading

Issue 7.8

Issue 7.8 is now online!

The August issue of Methods is now online!

This month’s issue contains two Applications articles and two Open Access articles, all of which are freely available.

Plant-O-Matic: A free iOS application that combines the species distribution models with the location services built into a mobile device to provide users with a list of all plant species expected to occur in the 100 × 100 km geographic grid cell corresponding to the user’s location.

RClone: An R package built upon genclone software which includes functions to handle clonal data sets, allowing:

  • Checking for data set reliability to discriminate multilocus genotypes (MLGs)
  • Ascertainment of MLG and semi-automatic determination of clonal lineages (MLL)
  • Genotypic richness and evenness indices calculation based on MLGs or MLLs
  • Describing several spatial components of clonality

Continue reading

Celebrating Owl Research on International Owl Awareness Day

Post provided by LEANNE HEISLER

snowy-owl-981653_640Today, on International Owl Awareness Day (August 4), we celebrate the research we have done to better understand owls and their prey. There are over 200 extant species of owls, a handful of which have geographic distributions spanning several continents (i.e., barn owl, snowy owl, short-eared owl, long-eared owl). So no matter where you are in the world you’re probably not too far away from an owl.

Ecologists and paleontologists have taken advantage of this to study owls and their prey. One of the most widely used methods for this is collecting and dissecting owl pellets. We discuss some of the major benefits of studying owl pellets in our recent Methods in Ecology and Evolution Review article ‘Owl pellets: a more effective alternative to conventional trapping for broad-scale studies of small mammal communities’. Continue reading

Planning Habitat for Very Long-Distance Connectivity under Climate Change

Post provided by JENNY HODGSON

Climate change and habitat fragmentation are interacting threats: it is likely that many species cannot reach newly suitable areas at the cool edge of their range because there is not enough habitat, in the right places, to support range expansion over multiple generations. Conservation efforts are already underway to restore large areas of habitat, and to improve the “connectivity” within networks of habitat. However, there are multiple ways of measuring connectivity and few of them address the scale of shifts that are likely to be needed under climate change. This could be a problem if it leads to inefficient conservation prioritisation.

The Conductance Metric

How conductance generally depends on the amount of habitat in the landscape. Squares show the conductance of landscapes with a random selection of cells chosen to be habitat. The red line is based only on the 100% point and the expectation that conductance is proportional to amount of habitat squared.

How conductance generally depends on the amount of habitat in the landscape. Squares show the conductance of landscapes with a random selection of cells chosen to be habitat. The red line is based only on the 100% point and the expectation that conductance is proportional to amount of habitat squared.

We first developed the conductance metric in 2012 and we found that it is correlated to the speed with which a species can spread through a landscape, from a specified source location to a specified target. A key difference between this and most other connectivity metrics is that it incorporates both reproduction within habitat patches and dispersal between habitat patches, over multiple generations (further explanation here). Sometimes there could be many very well-connected patches in a network, and yet no easy way for a species to cross the landscape from end to end. This could be a problem for the species’ survival, if staying within its current regions of occupancy is unsustainable, for example if it is being pushed northwards by climate change. Continue reading

Achieving Reproducibility in Research

Earlier this month Leila Walker attended a panel discussion imparting ‘Practical Tips for Reproducible Research’, as part of the Annual Meeting of the Macroecology Special Interest Group (for an overview of the meeting as a whole check out this Storify). The session and subsequent drinks reception was sponsored by Methods in Ecology and Evolution. Here, Leila reports back on the advice offered by the panel members.

For anyone interested in viewing further resources from the session, please see here. Also, you may like to consider attending the best practice for code archiving workshop at the 2016 BES Annual Meeting. Do you have any tips for making your research reproducible? Comment on this post or email us and let us know!

This year’s Annual Meeting of the Macroecology SIG was the biggest yet, with around 75 attendees and even representation across the PhD, post-doc and faculty spectrum. The panel discussion aimed to consider what reproducibility means to different people, identify the reproducibility issues people struggle with, and ultimately provide practical tips and tools for how to achieve reproducible research. Each of the participants delivered a short piece offering their perspective on reproducibility, with plenty of opportunity for discussion during the session itself and in the poster and wine reception that followed.

Attendees enjoy a wine reception (sponsored by MEE) whilst viewing posters and reflecting on the Reproducible Research panel discussion. Photo credit: Leila Walker

Attendees enjoy a wine reception (sponsored by MEE) whilst viewing posters and reflecting on the Reproducible Research panel discussion. Photo credit: Leila Walker

Continue reading

rotl Paper Published

THIS PIECE WAS ORIGINALLY POSTED ON THE ROPENSCI BLOG.

We (Francois MichonneauJoseph Brown and David Winter) are excited to announce a paper describing rotl, our package for the Open Tree of Life data, has been published. The full citation is:

Michonneau, F., Brown, J. W., Winter, D. J. (2016), rotl: an R package to interact with the Open Tree of Life data. Methods in Ecology and Evolution. doi: 10.1111/2041-210X.12593

The paper, which is freely available, describes the package and the data it wraps in detail. Rather than rehash the information here, we will use this post to briefly introduce the goals of the package and thank some of the people that helped it come to be.

What Data Does Open Tree Have and How Can rotl Help You Get It?

The Open Tree of Life combines knowledge from thousands of scientific studies to produce a single source of information about the relationships among all species on earth. In addition to storing the trees and taxonomies that go into this project, the Open Tree provides a “synthesis tree” that represents this combined knowledge. The Open Tree data can be accessed via the web page linked above, and through an API. rotl takes advantage of this API to give R users the ability to search for phylogenetic information and import the results into their R sessions. The imported data can then be used with the growing ecosystem of packages for phylogenetic and comparative biology in R. Continue reading