How Can We Quantify the Strength of Migratory Connectivity?

Technological advancements in the past 20 years or so have spurred rapid growth in the study of migratory connectivity (the linkage of individuals and populations between seasons of the annual cycle). A new article in Methods in Ecology and Evolution provides methods to help make quantitative comparisons of migratory connectivity across studies, data types, and taxa to better understand the causes and consequences of the seasonal distributions of populations.

In a new video, Emily Cohen, Jeffrey Hostetler and Michael Hallworth explain what migratory connectivity is and how the methods in their new article – ‘Quantifying the strength of migratory connectivity‘ – can help you to study it. They also introduce and give a quick tutorial on their new R package MigConnectivity.

This video is based on the article ‘Quantifying the strength of migratory connectivity by Cohen et al.


New Associate Editor: David Soto

Today, we are pleased to be the latest new member of the Methods in Ecology and Evolution Associate Editor Board. David Soto joins us from the University of Leuven in Belgium and you can find out a little more about him below.

David Soto

“I am an isotope ecologist with interests in developing new stable isotope methods and techniques for tracing spatio-temporal changes in food webs, and understanding animal movement and large-scale migration. My current research focus is on aquatic food webs using isotopic tracers such as hydrogen isotopes, and on insect migration patterns predicting natal origins by combining isoscapes and likelihood-based geospatial assignment methods.”

David is currently working on isotopic methodologies to quantify the linkages and support of aquatic and terrestrial primary production sources into Afrotropical aquatic food webs. He recently developed a new method to distinguish dietary sources combining stable isotopes and trace metal accumulation data. Other recent published articles investigated the use of hydrogen isotopes to track fish provenance and to infer butterfly migration movements across the Sahara. He is also collaborating with the IsoriX core team to develop a new method and R package to infer spatial origins of migratory animals using mixed models.

We are thrilled to welcome David as a new Associate Editor and we look forward to working with him on the journal.

Improved and Harmless Demethylation Method for Ecological Epigenetic Experiments

In a new Methods in Ecology and Evolution video, Javier Puy outlines a new method of experimental plant DNA demethylation for ecological epigenetic experiments. While the traditionally-used approach causes underdeveloped root systems and high mortality of treated plants, this new one overcomes the unwanted effects while maintaining the demethylation efficiency. The authors demonstrate its application for ecological epigenetic experiments: testing transgenerational effects of plant–plant competition.

This novel method could be better suited for experimental studies seeking valuable insights into ecological epigenetics. As it’s based on periodical spraying of azacytidine on established plants, it’s suitable for clonal species reproducing asexually, and it opens the possibility of community-level experimental demethylation of plants.

This video is based on the article ‘Improved demethylation in ecological epigenetic experiments: Testing a simple and harmless foliar demethylation application by Puy et al.

Solving YOUR Ecology Challenges with R: Ecology Hackathon in Ghent

©2016 The R Foundation

Scientific software is an increasingly important part of scientific research, and ecologists have been at the forefront of developing open source tools for ecological research. Much of this software is distributed via R packages – there are over 200 R packages for ecology and evolution on CRAN alone. Methods regularly publishes Application articles introducing R packages (and other software) that enable ecological research, and we’re always looking for new ways to enable even more and better ecological software.

This December, we will be teaming up with rOpenSci and special interest groups from BES, GfÖ and NecoV to hold our first Ecology Hackathon at the Ecology Across Borders conference in Ghent. The hackathon will be held as a one-day pre-conference workshop on Monday 11th December. Together, the attendees will identify some challenges for ecological research, and team up to build R packages that help solve them.

We’ve started compiling potential topics for new R packages in a collaborative document, but we need more. Are you having any difficulties in your research that could be solved with an R package? Is there a package that you wish existed but have never been able to find? If so, WE WANT TO HEAR FROM YOU!

Please take a look at our current list of challenges and add your suggestions!

Animal Behaviour through a Virtual Lens

Motion vision is an important source of information for many animals. It facilitates an animal’s movement through an environment, as well as being essential for locating prey and detecting predators. However, information on the conditions for motion vision in natural environments is limited.

To address this, Bian et al. have developed an innovative approach that combines novel field techniques with tools from 3D animation to determine how habitat structure, weather and motion vision influence animal behaviour. Their project focuses on Australia’s charismatic dragon lizards, and will place the animals’ motion displays in a visual-ecological context. The application of this approach goes well beyond this topic and the authors suggest the motion graphic technologies is a valuable tool for investigating the visual ecology of animals in a range of environments and at different spatial and temporal scales.

This video is based on the article ‘Integrating evolutionary biology with digital arts to quantify ecological constraints on vision-based behaviour by Bian et al.

Two More New Associate Editors

Today we are welcoming two more Associate Editors to the Methods in Ecology and Evolution who were invited to work with the journal following our open call earlier this year. Jessica Royles joins from the University of Cambridge, UK and Simon Blomberg is coming to us from the University of Queensland, Australia. You can find out more about both of them below.

Simon Blomberg

“I am a statistician who started out as a lizard demographer. I am interested in all applications of statistics in evolutionary biology and systematics. It is my passion to see that good science gets done by everybody, and sound statistical methods are essential to reach that goal. My research involves the application of stochastic process models (predominantly Itoh diffusions) to the macroevolution of quantitative traits. I believe that evolution can be described by beautiful mathematics but theory must be tested with data. I have published widely on phylogenetic comparative methods. I use Bayesian methods, data augmentation, regularisation and other modern and traditional statistical methods. I am interested in how to treat missing data. I still like lizards. Also jazz.”

Simon has been working on stochastic process models for a couple of years. His most recent article ‘Beyond Brownian motion and the Ornstein-Uhlenbeck process: Stochastic diffusion models for the evolution of quantitative characters‘ is now available on BioRxiv and he would welcome comments on it from the Methods community.

Jessica Royles

“I am interested in the impact of climate change on plant physiology and specialise in using stable isotopes as environmental markers. Having worked in Antarctica I have strong interests in polar biology, high latitude peatlands and fieldwork techniques. My current work focusses on  temperate bryophytes and I am interested in using techniques including gas exchange and chlorophyll fluorescence at different spatial scales to link the leaf level to the ecosystem level.”

Jessica’s most recently published article – ‘Widespread Biological Response to Rapid Warming on the Antarctic Peninsula‘ – describes how she and her co-authors used moss cores to study Antarctic warming due to climate change. The article builds on her previous paper ‘Plants and Soil Microbes Respond to Recent Warming on the Antarctic Peninsula‘. Jessica is currently working on a Moss Ecophysiology project which aims to investigate the value of mosses as tools to understand past climate.

We are thrilled to welcome Simon and Jessica to the Associate Editor Board and we look forward to working with them over the coming years.

Sticking Together or Drifting Apart? Quantifying the Strength of Migratory Connectivity

Post provided by Emily Cohen

Red Knot migratory connectivity is studied with tracking technologies and color band resighting. © Tim Romano

Red Knot migratory connectivity is studied with tracking technologies and colour band resighting. © Tim Romano

The seasonal long-distance migration of all kinds of animals – from whales to dragonflies to amphibians to birds – is as astonishing a feat as it is mysterious and this is an especially exciting time to study migratory animals. In the past 20 years, rapidly advancing technologies  – from tracking devices, to stable isotopes in tissues, to genomics and analytical techniques for the analysis of ring re-encounter databases – mean that it’s now possible to follow many animals throughout the year and solve many of the mysteries of migration.

What is Migratory Connectivity?

One of the many important things we’re now able to measure is migratory connectivity, the connections of migratory individuals and populations between seasons. There are really two components of migratory connectivity:

  1. Linking the geography of where individuals and populations occur between seasons.
  2. The extent, or strength, of co-occurrence of individuals and populations between seasons.

Continue reading

Issue 8.11

Issue 8.11 is now online!

The November issue of Methods is now online!

This extra large issue contains seven Applications articles and three Open Access articles. These five papers are freely available to everyone, no subscription required.

 LSCorridors: LandScape Corridors considers stochastic variation, species perception and landscape influence on organisms in the design of ecological corridors. It lets you simulate corridors for species with different requirements and considers that species perceive the surrounding landscape in different ways.

 HistMapR: HistMapR contains a number of functions that can be used to semi-automatically digitize historical land use according to a map’s colours. Digitization is fast, and agreement with manually digitized maps of around 80–90% meets common targets for image classification. This manuscript has a companion video and was recommended by Associate Editor Sarah Goslee.

 vortexR: An R package to automate the analysis and visualisation of outputs from the population viability modelling software Vortex. vortexR facilitates collating Vortex output files, data visualisation and basic analyses (e.g. pairwise comparisons of scenarios), as well as providing more advanced statistics.

Continue reading

The Power of Infinity: Using 3D Fractal Geometry to Study Irregular Organisms

Post provided by Jessica Reichert, André R. Backes, Patrick Schubert and Thomas Wilke

The Problem with the Shape

More than anything else, the phenotype of an organism determines how it interacts with the environment. It’s subject to natural selection, and may help to unravel the underlying evolutionary processes. So shape traits are key elements in many ecological and biological studies.

The growth form of corals is highly variable. ©Jessica Reichert

The growth form of corals is highly variable. ©Jessica Reichert

Commonly, basic parameters like distances, areas, angles, or derived ratios are used to describe and compare the shapes of organisms. These parameters usually work well in organisms with a regular body plan. The shape of irregular organisms – such as many plants, fungi, sponges or corals – is mainly determined by environmental factors and often lacks the distinct landmarks needed for traditional morphometric methods. The application of these methods is problematic and shapes are more often categorised than actually measured.

As scientists though, we favour independent statistical analyses, and there’s an urgent need for reliable shape characterisation based on numerical approaches. So, scientists often determine complexity parameters such as surface/volume ratios, rugosity, or the level of branching. However, these parameters all share the same drawback: they are delineated to a univariate number, taking information from one or few spatial scales and because of this essential information is lost. Continue reading

Animation Meets Biology: Shedding New Light on Animal Behaviour

Below is a press release about the Methods paper ‘Integrating evolutionary biology with digital arts to quantify ecological constraints on vision-based behaviour‘ taken from the La Trobe University.

Ctenophorus fionni (Peninsula Dragon), male push up display - Copyright Jose Ramos, La Trobe University

Ctenophorus fionni (Peninsula Dragon), male push up display. © Jose Ramos, La Trobe University

Many animals rely on movement to find prey and avoid predators. Movement is also an essential component of the territorial displays of lizards, comprising tail, limb, head and whole-body movements.

For the first time, digital animation has been used as a research tool to examine how the effectiveness of a lizard’s territorial display varies across ecological environments and conditions. The new research was published today in the journal Methods in Ecology and Evolution.

A team from La Trobe University’s School of Life Sciences, led by Dr Richard Peters, worked with academics from Monash University’s Faculty of IT to create, using 3D animation, a series of varied environmental settings and weather conditions, comprising different plant environments and wind conditions, to quantify how lizard displays are affected by this variation. Continue reading