Senior Editor Vacancy at Methods in Ecology and Evolution

Issue 6.7_Kakadu FloodplainsThe British Ecological Society (BES) is a thriving learned society established in 1913 whose vision is a world inspired, informed and influenced by ecology. It publishes five successful journals, and a quarterly newsletter, the Bulletin, that is distributed to its 5,000 members worldwide. At present, the BES is seeking an outstanding ecologist to join the team of Senior Editors on Methods in Ecology and Evolution.

Methods in Ecology and Evolution (MEE) is a high-profile broad-scope journal which promotes the development of new methods in ecology and evolution and facilitates their dissemination and uptake by the research community. It brings together papers from previously disparate sub-disciplines to provide a single forum for tracking methodological developments in all areas. The journal has excellent citation metrics including a current Impact Factor of 6.34 and an active social media presence.

Submissions to MEE are growing and we are seeking an Senior Editor to strengthen and complement the editorial team and to continue raising the journal’s profile worldwide. The journal’s editorial team currently consists of three Senior Editors who are supported by an international board of around 60 Associate Editors and dedicated editorial office personnel. The Editors work together to determine journal strategy and to increase the reputation and quality of the journal, in addition to making decisions on around 800 manuscripts submitted each year. Further details about the Journal and its current editorial team can be found at www.methodsinecologyandevolution.org. Continue reading

Lasers in the Jungle Somewhere: How Airborne LiDAR Reveals the Structure of Forests

Post provided by Phil Wilkes (PDRA, Department of Geography, University College London)

Like an X-ray, airborne LiDAR allows you to peer through the dense canopy, revealing the structure of the forest beneath. ©Robert Kerton, CSIRO

Like an X-ray, airborne LiDAR allows you to peer through the dense canopy, revealing the structure of the forest beneath. ©Robert Kerton, CSIRO

How many samples do you hope to collect on your next field assignment? 50, 100 or 1000? How about billions. It may seem overly optimistic, but that’s the reality when using Light Detection and Ranging, or LiDAR.

LiDAR works on the principle of firing hundreds of thousands of laser pulses a second that measure the distance to an intercepting surface. This harmless barrage of light creates a highly accurate 3D image of the target – whether it’s an elephant, a Cambodian temple or pedestrians walking down the street. LiDAR has made the news over recent years for its ability to unearth ancient temples through thick jungle, but for those of us with an ecological motive it is the otherwise impenetrable cloak of vegetation which is of more interest.

Airborne LiDAR in Forests

As it’s National Tree Week in the UK, the focus of this blog post will be on the application of LiDAR in forests. There are a number of techniques that use LiDAR in forests, across a range of scales, from handheld, backpack and tripod mounted terrestrial laser scanners to spaceborne instruments on the International Space Station. Continue reading

Genetic Research May Help Trace Chum Salmon to Home Rivers

Below is a press release about the Methods paper ‘Potentially adaptive mitochondrial haplotypes as a tool to identify divergent nuclear loci‘ taken from the University of Alaska Fairbanks.

Michael Garvin sails through Auke Bay, just north of Juneau in Southeast Alaska. ©Chris Lunsford

Michael Garvin sails through Auke Bay, just north of Juneau in Southeast Alaska. ©Chris Lunsford

University of Alaska Fairbanks researchers have uncovered genetic markers that can help trace chum salmon to the rivers in which they hatched, according to a new paper published in the journal Methods in Ecology and Evolution.

Mapping out chum salmon pathways could help improve management of the species in Western Alaska, according to Oregon State University Department of Integrative Biology postdoctoral fellow Michael Garvin.

“In some years, chum salmon are frequently the bycatch of pollock fishermen” in the Bering Sea, Garvin explained. “Genetically, chum salmon that originate in Western Alaska tend to look very similar. This makes it difficult for stakeholders because management and conservation efforts to address this bycatch can differ among these regions, but the ability to identify them with genetics is not possible.” Continue reading

Can We Really Measure Habitat Condition From Space?

Post provided by Tom Harwood, Randall Donohue, Simon Ferrier, Tim McVicar, Graeme Newell, Matt White and Kristen Williams

Remotely sensing can see patterns of land cover, but how do we use this information to quantify human impact on biodiversity?

Remotely sensing can see patterns of land cover, but how do we use this information to quantify human impact on biodiversity? ©NASA/GSFC/Jeff Schmaltz/MODIS Land Rapid Response Team

It’s very hard to make sensible choices without sensible information. When it comes to actions around changing land use and its ecological impact though, this is often what we are forced to do. If we want to reduce the impact of human activities on natural ecosystems, we need to know how much change has already occurred and how altered an ecosystem might be from its “natural” state.

Working out which parts of the landscape have been changed and mapping the absence of natural vegetation is an achievable (though onerous) task. However, moving beyond this binary view of the world is a huge challenge. Pretty much all habitat has been modified by human influences to some extent – by, for example, wood extraction, the introduction of invasive species or livestock grazing. This means that a lot of the apparently native habitat is no longer capable of supporting its full complement of native biodiversity. Continue reading

National Tree Week Virtual Issue

mee-nationaltreeweek-cover-720pxlIn the UK, National Tree Week (26 November – 4 December) celebrates tree planting within local communities. The latest BES cross-journal Virtual Issue contains recent papers that highlight the global importance of trees and forests as habitat – for species from insects to primates – and in meeting human needs for fuel and agriculture. The selected papers also demonstrate novel methods scientists are using to study trees and forests.

National Tree Week is the UK’s largest tree celebration. It was started in 1975 by the Tree Council and has grown into an event that brings hundreds of organisations together to mark the beginning of Britain’s winter tree planting season.

This Virtual Issue was compiled by Methods in Ecology and Evolution Associate Editors Sarah Goslee and Sean McMahon. All of the articles in this Virtual Issue are free for a limited time and we have a little bit more information about each of the Methods papers included here:

Connecting Forest Patches

Sagebrush steppe in eastern Idaho, USA

© Brittany J. Teller

Landscape connectivity is important for the ecology and genetics of populations threatened by climate change and habitat fragmentation. To begin our Virtual Issue Rayfield et al. present a method for identifying a multipurpose network of forest patches that promotes both short- and long-range connectivity. Their approach can be tailored to local, regional and continental conservation initiatives to protect essential species movements that will allow biodiversity to persist in a changing climate. The authors illustrate their method in the agroecosystem bordered by the Laurentian and Appalachian mountain ranges, that surrounds Montreal.

Continue reading

Topography of Teeth: Tools to Track Animal and Ecosystem Responses to Environmental Changes

Below is a press release about the Methods paper ‘Inferring diet from dental morphology in terrestrial mammals‘ taken from the Smithsonian Institution.

By charting the slopes and crags on animals’ teeth as if they were mountain ranges, scientists at the Smithsonian’s National Museum of Natural History have created a powerful new way to learn about the diets of extinct animals from the fossil record.

Understanding the diets of animals that lived long ago can tell researchers about the environments they lived in and help them piece together a picture of how the planet has changed over deep time. The new quantitative approach to analysing dentition, reported on 21 November in the journal Methods in Ecology and Evolution, will also give researchers a clearer picture of how animals evolve in response to changes in their environment.

gorilla

A 3D reconstruction of the teeth of a western gorilla (Gorilla gorilla).

Continue reading

What is Methods in Ecology and Evolution?

In a new Methods in Ecology and Evolution podcast, the Senior Editors – Rob Freckleton, Bob O’Hara and Jana Vamosi – discuss the past, present and future of the journal. They talk about what sets it apart from other journals, their favourite articles and the kinds of papers that they would like to see more of. If you’re thinking about submitting to Methods in Ecology and Evolution, they have some advice for you as well.

Articles Mentioned by the Editors:

To find out more about Methods in Ecology and Evolution, read our Aims and Scope and Author Guidelines

Issue 7.11

Issue 7.11 is now online!

The November issue of Methods is now online!

This month’s issue contains four Applications articles and two Open Access articles, all of which are freely available.

– moveHMM: This R package allows ecologists to process GPS tracking data into series of step lengths and turning angles, and to fit a hidden Markov model to these data, allowing, in particular, for the incorporation of environmental covariates.

– BORIS: An open-source and multiplatform standalone program that allows a user-specific coding environment to be set for a computer-based review of previously recorded videos or live observations. Being open to user-specific settings, the program allows a project-based ethogram to be defined that can then be shared with collaborators, or can be imported or modified.

– inbreedR: An R package that provides functions to measure variance in inbreeding – through the strength of correlation in heterozygosity across marker loci – based on microsatellite and SNP markers with associated P-values and confidence intervals. Within the framework of Heterozygosity–fitness correlation theory, inbreedR also estimates the impact of inbreeding on marker heterozygosity and fitness.

– Terrestrial Precipitation Analysis: This package is comprised of the Precipitation Trends (P-Trend), Precipitation Attributes (P-Att) and Precipitation Manipulation (P-Man) tools. Combined, these web tools allow researchers to easily calculate fundamental precipitation statistics for past, present and projected future precipitation regimes for any terrestrial location in the world.

Continue reading

In Vivo Micro-CT Scanning: Studying Reptiles and Amphibians from the Inside Out

POST PROVIDED BY CHRIS BROECKHOVEN, ANTON DU PLESSIS, STEPHAN G. LE ROUX, P. LE FRAS N. MOUTON AND CANG HUI

Lizards, such as these South African armadillo lizards, serve an important role as model organisms for various ecological and evolutionary studies. © Chris Broeckhoven

Lizards, such as these South African armadillo lizards, serve an important role as model organisms for various ecological and evolutionary studies. © Chris Broeckhoven

X-ray micro-computed tomography – or µCT – is a technique that uses x-rays to create high resolution cross-sections of samples. Virtual 3D models can be made from these cross-sections without destroying the original samples. Micro-CT has important applications in medical imaging and, in the biomedical field, in vivo µCT allows researchers to make virtual 3D models of the skeleton and organs of live small animals. Three-dimensional models like these could provide insight into diseases and guide the development of medicines and therapies.

In vivo µCT holds three major advantages over other methods:

  1. It allows for repeated measurements of small live animals at different times without having to sacrifice them.
  2. It eliminates variation among individuals.
  3. It can reduce the number of animals required to obtain statistically meaningful data.

A variety of commercially available µCT scanners that are optimised for scanning live animals are now available. The use of in vivo µCT in ecological and evolutionary studies, however, has greatly lagged behind its use in biomedical studies. Continue reading

Scat Collection Protocols for Dietary DNA Metabarcoding

DNA dietary analysis is a non-invasive tool used to identify the food consumed by vertebrates. The method relies on identifying prey DNA in the target animals’ scats. It’s especially useful for marine animals such as seals and seabirds as it is difficult to watch their feeding events.

In the video below, Julie McInnes describes scat collection protocols that she (along with Rachael Alderman, Bruce Deagle, Mary-Anne Lea, Ben Raymond and Simon Jarman) developed to optimise the detection of food DNA in vertebrate scat samples. The authors use the shy albatross to demonstrate their new methods.

Continue reading